References
Abadie, Alberto, and Guido W. Imbens. 2006. “Large Sample
Properties of Matching Estimators for Average Treatment Effects.”
Econometrica 74 (1): 235–67. https://doi.org/10.1111/j.1468-0262.2006.00655.x.
———. 2008. “On the Failure of the Bootstrap for Matching
Estimators.” Econometrica 76 (6): 1537–57. https://doi.org/10.3982/ECTA6474.
———. 2016. “Matching on the Estimated Propensity Score.”
Econometrica 84 (2): 781–807. https://doi.org/10.3982/ECTA11293.
Abadie, Alberto, and Jann Spiess. 2020. “Robust Post-Matching
Inference.” Journal of the American Statistical
Association 0 (ja): 1–37. https://doi.org/10.1080/01621459.2020.1840383.
Alam, Shomoita, Erica E. M. Moodie, and David A. Stephens. 2019.
“Should a Propensity Score Model Be Super? The Utility of Ensemble
Procedures for Causal Adjustment.” Statistics in
Medicine 38 (9): 1690–1702. https://doi.org/10.1002/sim.8075.
Ali, M. Sanni, Rolf H. H. Groenwold, Svetlana V. Belitser, Wiebe R.
Pestman, Arno W. Hoes, Kit C. B. Roes, Anthonius de Boer, and Olaf H.
Klungel. 2015. “Reporting of Covariate Selection and Balance
Assessment in Propensity Score Analysis Is Suboptimal: A Systematic
Review.” Journal of Clinical Epidemiology 68 (2):
122–31. https://doi.org/10.1016/j.jclinepi.2014.08.011.
Angeles Resa, Maria de los, and José R. Zubizarreta. 2016.
“Evaluation of Subset Matching Methods and Forms of Covariate
Balance.” Statistics in Medicine 35 (27): 4961–79. https://doi.org/10.1002/sim.7036.
Arguelles, Gabriel R., Max Shin, Drake G. Lebrun, Christopher J.
DeFrancesco, Peter D. Fabricant, and Keith D. Baldwin. 2022. “A
Systematic Review of Propensity Score Matching
in the Orthopedic Literature.” HSS Journal,
April, 15563316221082632. https://doi.org/10.1177/15563316221082632.
Austin, Peter C. 2009. “Type I Error Rates,
Coverage of Confidence Intervals, and
Variance Estimation in Propensity-Score Matched
Analyses.” The International Journal of
Biostatistics 5 (1). https://doi.org/10.2202/1557-4679.1146.
———. 2011a. “Optimal Caliper Widths for Propensity-Score Matching
When Estimating Differences in Means and Differences in Proportions in
Observational Studies.” Pharmaceutical Statistics 10
(2): 150–61. https://doi.org/10.1002/pst.433.
———. 2011b. “An Introduction to Propensity Score Methods for
Reducing the Effects of Confounding in Observational Studies.”
Multivariate Behavioral Research 46 (3): 399–424. https://doi.org/10.1080/00273171.2011.568786.
———. 2014. “A Comparison of 12 Algorithms for Matching on the
Propensity Score.” Statistics in Medicine 33 (6):
1057–69. https://doi.org/10.1002/sim.6004.
———. 2019. “Assessing Covariate Balance When Using the Generalized
Propensity Score with Quantitative or Continuous Exposures.”
Statistical Methods in Medical Research 28 (5): 1365–77. https://doi.org/10.1177/0962280218756159.
———. 2022. “Bootstrap Vs Asymptotic Variance Estimation When Using
Propensity Score Weighting with Continuous and Binary Outcomes.”
Statistics in Medicine 41 (22): 4426–43. https://doi.org/10.1002/sim.9519.
Austin, Peter C., and Dylan S. Small. 2014. “The Use of
Bootstrapping When Using Propensity-Score Matching Without Replacement:
A Simulation Study.” Statistics in Medicine 33 (24):
4306–19. https://doi.org/10.1002/sim.6276.
Austin, Peter C., and Elizabeth A. Stuart. 2015a. “Optimal Full
Matching for Survival Outcomes: A Method That Merits More Widespread
Use.” Statistics in Medicine 34 (30): 3949–67. https://doi.org/10.1002/sim.6602.
———. 2015b. “Moving Towards Best Practice When Using Inverse
Probability of Treatment Weighting (IPTW) Using the Propensity Score to
Estimate Causal Treatment Effects in Observational Studies.”
Statistics in Medicine 34 (28): 3661–79. https://doi.org/10.1002/sim.6607.
———. 2017a. “The Performance of Inverse Probability of Treatment
Weighting and Full Matching on the Propensity Score in the Presence of
Model Misspecification When Estimating the Effect of Treatment on
Survival Outcomes.” Statistical Methods in Medical
Research 26 (4): 1654–70. https://doi.org/10.1177/0962280215584401.
———. 2017b. “Estimating the Effect of Treatment on Binary Outcomes
Using Full Matching on the Propensity Score.” Statistical
Methods in Medical Research 26 (6): 2505–25. https://doi.org/10.1177/0962280215601134.
Benedetto, Umberto, Stuart J Head, Gianni D Angelini, and Eugene H
Blackstone. 2018. “Statistical Primer: Propensity Score Matching
and Its Alternatives.” European Journal of
Cardio-Thoracic Surgery 53 (6): 1112–17. https://doi.org/10.1093/ejcts/ezy167.
Ben-Michael, Eli, Avi Feller, David A. Hirshberg, and José R.
Zubizarreta. 2021. “The Balancing Act in Causal
Inference.” arXiv:2110.14831 [Stat], October. https://arxiv.org/abs/2110.14831.
Bramante, Carolyn T., Steven G. Johnson, Victor Garcia, Michael D.
Evans, Jeremy Harper, Kenneth J. Wilkins, Jared D. Huling, et al. 2022.
“Diabetes Medications and Associations with Covid-19 Outcomes in
the N3C Database: A National Retrospective Cohort Study.” Edited
by Surasak Saokaew. PLOS ONE 17 (11): e0271574. https://doi.org/10.1371/journal.pone.0271574.
Brookhart, M. Alan, Til Stürmer, Robert J. Glynn, Jeremy Rassen, and
Sebastian Schneeweiss. 2010. “Confounding Control in Healthcare
Database Research: Challenges and Potential Approaches.”
Medical Care 48 (6): S114–20. https://doi.org/10.1097/MLR.0b013e3181dbebe3.
Cafri, Guy, and Peter C. Austin. 2023. “Variance Estimation of the
Risk Difference When Using Propensity-Score Matching and
Weighting with Time-to-Event Outcomes.”
Pharmaceutical Statistics, May, pst.2317. https://doi.org/10.1002/pst.2317.
Caliendo, Marco, and Sabine Kopeinig. 2008. “Some Practical
Guidance for the Implementation of Propensity Score Matching.”
Journal of Economic Surveys 22 (1): 31–72. https://doi.org/10.1111/j.1467-6419.2007.00527.x.
Carpenter, James, and John Bithell. 2000. “Bootstrap Confidence
Intervals: When, Which, What? A Practical Guide for Medical
Statisticians.” Statistics in Medicine 19 (9): 1141–64.
https://doi.org/10.1002/(SICI)1097-0258(20000515)19:9<1141::AID-SIM479>3.0.CO;2-F.
Cham, Heining, and Stephen G. West. 2016. “Propensity Score
Analysis with Missing Data.” Psychological Methods 21
(3): 427–45. https://doi.org/10.1037/met0000076.
Chan, Kwun Chuen Gary, Sheung Chi Phillip Yam, and Zheng Zhang. 2016.
“Globally Efficient Non-Parametric Inference of Average Treatment
Effects by Empirical Balancing Calibration Weighting.”
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 78 (3): 673–700. https://doi.org/10.1111/rssb.12129.
Chattopadhyay, Ambarish, Christopher H. Hase, and José R. Zubizarreta.
2020. “Balancing Vs Modeling Approaches to Weighting in
Practice.” Statistics in Medicine 39 (24): 3227–54. https://doi.org/10.1002/sim.8659.
Cohn, Eric R., and José R. Zubizarreta. 2022. “Profile Matching
for the Generalization and Personalization of Causal Inferences.”
Epidemiology 33 (5): 678. https://doi.org/10.1097/EDE.0000000000001517.
Cole, Stephen R., and Constantine E. Frangakis. 2009. “The
Consistency Statement in Causal Inference: A Definition or an
Assumption?” Epidemiology 20 (1): 3–5. https://doi.org/10.1097/EDE.0b013e31818ef366.
Connors, Alfred F, Neal V Dawson, Frank E Harrell, Douglas Wagner,
Norman Desbiens, Lee Goldman, Albert W Wu, et al. 1996. “The
Effectiveness of Right Heart Catheterization in the Initial Care of
Critically III Patients.” JAMA: The Journal of the American
Medical Association 276 (11): 889. https://doi.org/10.1001/jama.1996.03540110043030.
D’Agostino McGowan, Lucy. 2022. “Sensitivity Analyses for
Unmeasured Confounders.” Current Epidemiology Reports 9
(4): 361–75. https://doi.org/10.1007/s40471-022-00308-6.
Daniel, Rhian M. 2018. “Double Robustness.” In, 1–14.
American Cancer Society. https://doi.org/10.1002/9781118445112.stat08068.
Desai, Rishi J., Kenneth J. Rothman, Brian .T Bateman, Sonia
Hernandez-Diaz, and Krista F. Huybrechts. 2017. “A
Propensity-Score-Based Fine Stratification Approach for Confounding
Adjustment When Exposure Is Infrequent:” Epidemiology 28
(2): 249–57. https://doi.org/10.1097/EDE.0000000000000595.
Diamond, Alexis, and Jasjeet S. Sekhon. 2013. “Genetic Matching
for Estimating Causal Effects: A General Multivariate Matching Method
for Achieving Balance in Observational Studies.” Review of
Economics and Statistics 95 (3): 932945. https://doi.org/10.1162/REST_a_00318.
Dong, Jing, Junni L Zhang, Shuxi Zeng, and Fan Li. 2020. “Subgroup
Balancing Propensity Score.” Statistical Methods in Medical
Research 29 (3): 659–76. https://doi.org/10.1177/0962280219870836.
Efron, B., and R. Tibshirani. 1986. “Bootstrap Methods for
Standard Errors, Confidence Intervals, and Other Measures of Statistical
Accuracy.” Statistical Science 1 (1): 54–75. https://www.jstor.org/stable/2245500.
Elwert, Felix, and Christopher Winship. 2014. “Endogenous
Selection Bias: The Problem of Conditioning on a Collider
Variable.” Annual Review of Sociology 40 (1): 31–53. https://doi.org/10.1146/annurev-soc-071913-043455.
Fogarty, Colin B., Mark E. Mikkelsen, David F. Gaieski, and Dylan S.
Small. 2016. “Discrete Optimization for Interpretable Study
Populations and Randomization Inference in an Observational Study of
Severe Sepsis Mortality.” Journal of the American Statistical
Association 111 (514): 447–58. https://doi.org/10.1080/01621459.2015.1112802.
Fortin, Stephen P., and Martijn Schuemie. 2022. “Indirect
Covariate Balance and Residual Confounding: An Applied
Comparison of Propensity Score Matching and Cardinality
Matching.” Pharmacoepidemiology and Drug Safety 31 (12):
1242–52. https://doi.org/10.1002/pds.5510.
Gabriel, Erin E., Michael C. Sachs, Torben Martinussen, Ingeborg
Waernbaum, Els Goetghebeur, Stijn Vansteelandt, and Arvid Sjölander.
2024. “Inverse Probability of Treatment Weighting with Generalized
Linear Outcome Models for Doubly Robust Estimation.”
Statistics in Medicine 43 (3): 534–47. https://doi.org/10.1002/sim.9969.
Gayat, Etienne, Matthieu Resche-Rigon, Jean-Yves Mary, and Raphaël
Porcher. 2012. “Propensity Score Applied to Survival Data Analysis
Through Proportional Hazards Models: A Monte Carlo
Study.” Pharmaceutical Statistics 11 (3): 222–29. https://doi.org/10.1002/pst.537.
Green, Kerry M., and Elizabeth A. Stuart. 2014. “Examining
Moderation Analyses in Propensity Score Methods: Application to
Depression and Substance Use.” Journal of Consulting and
Clinical Psychology, Advances in data analytic methods, 82 (5):
773–83. https://doi.org/10.1037/a0036515.
Greenland, Sander, Judea Pearl, and James M. Robins. 1999. “Causal
Diagrams for Epidemiologic Research.” Epidemiology 10
(1): 37–48. https://www.jstor.org/stable/3702180.
Greifer, Noah. 2020. Cobalt: Covariate Balance Tables and
Plots. https://CRAN.R-project.org/package=cobalt.
Greifer, Noah, and Elizabeth A Stuart. 2021a. “Matching Methods
for Confounder Adjustment: An Addition to the
Epidemiologist’s Toolbox.” Epidemiologic
Reviews, June, mxab003. https://doi.org/10.1093/epirev/mxab003.
Greifer, Noah, and Elizabeth A. Stuart. 2021b. “Choosing the
Estimand When Matching or Weighting in Observational Studies.”
arXiv:2106.10577 [Stat], June. https://arxiv.org/abs/2106.10577.
Gu, Xing Sam, and Paul R. Rosenbaum. 1993. “Comparison of
Multivariate Matching Methods: Structures, Distances, and
Algorithms.” Journal of Computational and Graphical
Statistics 2 (4): 405. https://doi.org/10.2307/1390693.
Hainmueller, J. 2012. “Entropy Balancing for Causal Effects: A
Multivariate Reweighting Method to Produce Balanced Samples in
Observational Studies.” Political Analysis 20 (1):
25–46. https://doi.org/10.1093/pan/mpr025.
Han, Shasha, and Xiao-Hua Zhou. 2023. “Defining Estimands in
Clinical Trials: A Unified Procedure.” Statistics in
Medicine, March, sim.9702. https://doi.org/10.1002/sim.9702.
Haneuse, Sebastien, Tyler J. VanderWeele, and David Arterburn. 2019.
“Using the e-Value to Assess the Potential Effect of Unmeasured
Confounding in Observational Studies.” JAMA 321 (6):
602–3. https://doi.org/10.1001/jama.2018.21554.
Hansen, Ben B, and Stephanie Olsen Klopfer. 2006. “Optimal Full
Matching and Related Designs via Network Flows.” Journal of
Computational and Graphical Statistics 15 (3): 609–27. https://doi.org/10.1198/106186006X137047.
Harder, Valerie S., Elizabeth A. Stuart, and James C. Anthony. 2010.
“Propensity Score Techniques and the Assessment of Measured
Covariate Balance to Test Causal Associations in Psychological
Research.” Psychological Methods 15 (3): 234–49. https://doi.org/10.1037/a0019623.
Hernán, Miguel A. 2010. “The Hazards of Hazard Ratios.”
Epidemiology (Cambridge, Mass.) 21 (1): 13–15. https://doi.org/10.1097/EDE.0b013e3181c1ea43.
Hernán, Miguel A., and James M. Robins. 2006a. “Instruments for
Causal Inference: An Epidemiologist’s Dream?”
Epidemiology 17 (4): 360–72. https://doi.org/10.1097/01.ede.0000222409.00878.37.
Hernán, Miguel A, and James M Robins. 2020. Causal Inference: What
If. Boca Raton: Chapman & Hall/CRC. https://cdn1.sph.harvard.edu/wp-content/uploads/sites/1268/2020/01/ci_hernanrobins_21jan20.pdf.
Hernán, Miguel A, and James M. Robins. 2006b. “Estimating Causal
Effects from Epidemiological Data.” Journal of Epidemiology
and Community Health (1979-) 60 (7): 578–86. http://www.jstor.org/stable/40795098.
Hernán, Miguel A, and S L Taubman. 2008. “Does Obesity Shorten
Life? The Importance of Well-Defined Interventions to Answer Causal
Questions.” International Journal of Obesity 32 (S3):
S8–14. https://doi.org/10.1038/ijo.2008.82.
Hill, Jennifer, and Jerome P. Reiter. 2006. “Interval Estimation
for Treatment Effects Using Propensity Score Matching.”
Statistics in Medicine 25 (13): 2230–56. https://doi.org/10.1002/sim.2277.
Hill, Jennifer, Christopher Weiss, and Fuhua Zhai. 2011.
“Challenges With Propensity Score Strategies in a High-Dimensional
Setting and a Potential Alternative.” Multivariate Behavioral
Research 46 (3): 477–513. https://doi.org/10.1080/00273171.2011.570161.
Hirano, Keisuke, and Guido W. Imbens. 2005. “The Propensity Score
with Continuous Treatments.” In, edited by Andrew Gelman and
Xiao-Li Meng, 73–84. Chichester, UK: John Wiley & Sons, Ltd. https://doi.org/10.1002/0470090456.ch7.
Ho, Daniel E., Kosuke Imai, Gary King, and Elizabeth A. Stuart. 2007.
“Matching as Nonparametric Preprocessing for Reducing Model
Dependence in Parametric Causal Inference.” Political
Analysis 15 (3): 199–236. https://doi.org/10.1093/pan/mpl013.
Hong, Guanglei. 2010. “Marginal Mean Weighting Through
Stratification: Adjustment for Selection Bias in Multilevel
Data.” Journal of Educational and Behavioral Statistics
35 (5): 499–531. https://doi.org/10.3102/1076998609359785.
Huber, Martin. 2015. “Causal Pitfalls in the
Decomposition of Wage Gaps.”
Journal of Business & Economic Statistics 33 (2): 179–91.
https://doi.org/10.1080/07350015.2014.937437.
Huling, Jared D., Noah Greifer, and Guanhua Chen. 2023.
“Independence Weights for Causal Inference with Continuous
Treatments.” Journal of the American Statistical
Association 0 (ja): 1–25. https://doi.org/10.1080/01621459.2023.2213485.
Huling, Jared D., and Simon Mak. 2024. “Energy Balancing of
Covariate Distributions.” Journal of Causal Inference 12
(1). https://doi.org/10.1515/jci-2022-0029.
———. n.d. “Energy Balancing of Covariate Distributions.” https://doi.org/10.48550/arXiv.2004.13962.
Iacus, Stefano M., Gary King, and Giuseppe Porro. 2011.
“Multivariate Matching Methods That Are Monotonic Imbalance
Bounding.” Journal of the American Statistical
Association 106 (493): 345–61. https://doi.org/10.1198/jasa.2011.tm09599.
———. 2012. “Causal Inference Without Balance Checking: Coarsened
Exact Matching.” Political Analysis 20 (1): 1–24. https://doi.org/10.1093/pan/mpr013.
Imai, Kosuke, Gary King, and Elizabeth A. Stuart. 2008.
“Misunderstandings Between Experimentalists and Observationalists
about Causal Inference.” Journal of the Royal Statistical
Society. Series A (Statistics in Society) 171 (2): 481–502. https://doi.org/10.1111/j.1467-985X.2007.00527.x.
Imai, Kosuke, and Marc Ratkovic. 2014. “Covariate Balancing
Propensity Score.” Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 76 (1): 243263. https://doi.org/10.1111/rssb.12027.
Imai, Kosuke, and David A. Van Dyk. 2004. “Causal Inference with
General Treatment Regimes: Generalizing the Propensity Score.”
Journal of the American Statistical Association 99 (467):
854–66. https://www.jstor.org/stable/27590455.
Imbens, Guido W. 2000. “The Role of the Propensity Score in
Estimating Dose-Response Functions.” Biometrika 87 (3):
706–10. https://www.jstor.org/stable/2673642.
Ioannidis, John P. A., Yuan Jin Tan, and Manuel R. Blum. 2019.
“Limitations and Misinterpretations of e-Values for Sensitivity
Analyses of Observational Studies.” Annals of Internal
Medicine 170 (2): 108–11. https://doi.org/10.7326/M18-2159.
Kahan, Brennan C, Suzie Cro, Fan Li, and Michael O Harhay. 2023.
“Eliminating Ambiguous Treatment Effects Using Estimands.”
American Journal of Epidemiology, February, kwad036. https://doi.org/10.1093/aje/kwad036.
Kang, Joseph D. Y., and Joseph L. Schafer. 2007. “Demystifying
Double Robustness: A Comparison of Alternative Strategies for Estimating
a Population Mean from Incomplete Data.” Statistical
Science 22 (4): 523–39. https://doi.org/10.1214/07-STS227.
King, Gary, and Richard Nielsen. 2019. “Why Propensity Scores
Should Not Be Used for Matching.” Political Analysis,
May, 1–20. https://doi.org/10.1017/pan.2019.11.
King, Gary, and Langche Zeng. 2006. “The Dangers of Extreme
Counterfactuals.” Political Analysis 14 (2): 131–59. https://doi.org/10.1093/pan/mpj004.
Kush, Joseph M., Elise T. Pas, Rashelle J. Musci, and Catherine P.
Bradshaw. 2022. “Covariate Balance for Observational Effectiveness
Studies: A Comparison of Matching and Weighting.” Journal of
Research on Educational Effectiveness 0 (0): 1–24. https://doi.org/10.1080/19345747.2022.2110545.
Lee, Brian K., Justin Lessler, and Elizabeth A. Stuart. 2010.
“Improving Propensity Score Weighting Using Machine
Learning.” Statistics in Medicine 29 (3): 337–46. https://doi.org/10.1002/sim.3782.
Leyrat, Clémence, Shaun R Seaman, Ian R White, Ian Douglas, Liam Smeeth,
Joseph Kim, Matthieu Resche-Rigon, James R Carpenter, and Elizabeth J
Williamson. 2019. “Propensity Score Analysis with Partially
Observed Covariates: How Should Multiple Imputation Be Used?”
Statistical Methods in Medical Research 28 (1): 3–19. https://doi.org/10.1177/0962280217713032.
Li, Fan, and Fan Li. 2019. “Propensity Score Weighting for Causal
Inference with Multiple Treatments.” The Annals of Applied
Statistics 13 (4): 2389–2415. https://doi.org/10.1214/19-AOAS1282.
Li, Liang, and Tom Greene. 2013. “A Weighting Analogue to Pair
Matching in Propensity Score Analysis.” The International
Journal of Biostatistics 9 (2). https://doi.org/10.1515/ijb-2012-0030.
Li, Yan, and Liang Li. 2021. “Propensity Score Analysis Methods
with Balancing Constraints: A Monte Carlo Study.” Statistical
Methods in Medical Research 30 (4): 1119–42. https://doi.org/10.1177/0962280220983512.
Liang, Kung-Yee, and Scott L. Zeger. 1986. “Longitudinal Data
Analysis Using Generalized Linear Models.” Biometrika 73
(1): 13–22. https://doi.org/10.1093/biomet/73.1.13.
Lopez, Michael J., and Roee Gutman. 2017. “Estimation of Causal
Effects with Multiple Treatments: A Review and New Ideas.”
Statistical Science 32 (3): 432–54. https://doi.org/10.1214/17-STS612.
Lunceford, Jared K., and Marie Davidian. 2004. “Stratification and
Weighting via the Propensity Score in Estimation of Causal Treatment
Effects: A Comparative Study.” Statistics in Medicine 23
(19): 29372960. https://doi.org/10.1002/sim.1903.
MacKinnon, James G, and Halbert White. 1985. “Some
Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved
Finite Sample Properties.” Journal of Econometrics 29
(3): 305–25. https://doi.org/10.1016/0304-4076(85)90158-7.
Mao, Huzhang, Liang Li, and Tom Greene. 2018. “Propensity Score
Weighting Analysis and Treatment Effect Discovery.”
Statistical Methods in Medical Research, June, 096228021878117.
https://doi.org/10.1177/0962280218781171.
Matthay, Ellicott C., Erin Hagan, Laura M. Gottlieb, May Lynn Tan, David
Vlahov, Nancy E. Adler, and M. Maria Glymour. 2020. “Alternative
Causal Inference Methods in Population Health Research: Evaluating
Tradeoffs and Triangulating Evidence.” SSM - Population
Health 10 (April): 100526. https://doi.org/10.1016/j.ssmph.2019.100526.
McCaffrey, Daniel F., Beth Ann Griffin, Daniel Almirall, Mary Ellen
Slaughter, Rajeev Ramchand, and Lane F. Burgette. 2013. “A
Tutorial on Propensity Score Estimation for Multiple Treatments Using
Generalized Boosted Models.” Statistics in Medicine 32
(19): 3388–3414. https://doi.org/10.1002/sim.5753.
McCaffrey, Daniel F., Greg Ridgeway, and Andrew R. Morral. 2004.
“Propensity Score Estimation With Boosted Regression for
Evaluating Causal Effects in Observational Studies.”
Psychological Methods 9 (4): 403–25. https://doi.org/10.1037/1082-989X.9.4.403.
Ming, Kewei, and Paul R. Rosenbaum. 2000. “Substantial Gains in
Bias Reduction from Matching with a Variable Number of Controls.”
Biometrics 56 (1): 118–24. https://doi.org/10.1111/j.0006-341X.2000.00118.x.
Niknam, Bijan A., and Jose R. Zubizarreta. 2022. “Using
Cardinality Matching to Design Balanced and
Representative Samples for Observational
Studies.” JAMA 327 (2): 173–74. https://doi.org/10.1001/jama.2021.20555.
Pak, Kyongsun, Hajime Uno, Dae Hyun Kim, Lu Tian, Robert C. Kane,
Masahiro Takeuchi, Haoda Fu, Brian Claggett, and Lee-Jen Wei. 2017.
“Interpretability of Cancer Clinical Trial Results Using
Restricted Mean Survival Time as an Alternative to the Hazard
Ratio.” JAMA Oncology 3 (12): 1692. https://doi.org/10.1001/jamaoncol.2017.2797.
Pishgar, Farhad, Noah Greifer, Clémence Leyrat, and Elizabeth Stuart.
2021. “MatchThem:: Matching and Weighting After Multiple
Imputation.” The R Journal 13 (2): 292305. https://doi.org/10.32614/RJ-2021-073.
Rassen, Jeremy A., Abhi A. Shelat, Jessica Myers, Robert J. Glynn,
Kenneth J. Rothman, and Sebastian Schneeweiss. 2012. “One-to-Many
Propensity Score Matching in Cohort Studies.”
Pharmacoepidemiology and Drug Safety 21 (S2): 69–80. https://doi.org/10.1002/pds.3263.
Reifeis, Sarah A., and Michael G. Hudgens. 2020. “On Variance of
the Treatment Effect in the Treated Using Inverse Probability
Weighting.” arXiv:2011.11874 [Stat], November. http://arxiv.org/abs/2011.11874.
Ridgeway, Greg. 2006. “Assessing the Effect of Race Bias in
Post-Traffic Stop Outcomes Using Propensity Scores.” Journal
of Quantitative Criminology 22 (1): 1–29. https://doi.org/10.1007/s10940-005-9000-9.
Ripollone, John E., Krista F. Huybrechts, Kenneth J. Rothman, Ryan E.
Ferguson, and Jessica M. Franklin. 2018. “Implications of the
Propensity Score Matching Paradox in Pharmacoepidemiology.”
American Journal of Epidemiology 187 (9): 1951–61. https://doi.org/10.1093/aje/kwy078.
Robins, James M., Miguel Ángel Hernán, and Babette Brumback. 2000.
“Marginal Structural Models and Causal Inference in
Epidemiology.” Epidemiology 11 (5): 550–60. https://doi.org/10.1097/00001648-200009000-00011.
Rosenbaum, Paul R. 2007. “Interference Between Units in Randomized
Experiments.” Journal of the American Statistical
Association 102 (477): 191–200. https://doi.org/10.1198/016214506000001112.
Rosenbaum, Paul R. 2010. Design of Observational Studies.
Springer Series in Statistics. New York: Springer.
Rosenbaum, Paul R., and Donald B. Rubin. 1983. “The Central Role
of the Propensity Score in Observational Studies for Causal
Effects.” Biometrika 70 (1): 41–55. https://doi.org/10.1093/biomet/70.1.41.
———. 1984. “Reducing Bias in Observational Studies Using
Subclassification on the Propensity Score.” Journal of the
American Statistical Association 79 (387): 516–24. https://doi.org/10.2307/2288398.
———. 1985. “The Bias Due to Incomplete Matching.”
Biometrics 41 (1): 103–16. https://doi.org/10.2307/2530647.
Rubin, Donald B. 1973. “Matching to Remove Bias in Observational
Studies.” Biometrics 29 (1): 159–83. https://doi.org/10.2307/2529684.
———. 1980. “Bias Reduction Using Mahalanobis-Metric
Matching.” Biometrics 36 (2): 293–98. https://doi.org/10.2307/2529981.
———. 2004. Multiple Imputation for Nonresponse in Surveys.
Wiley Classics Library. Hoboken, N.J: Wiley-Interscience.
Sävje, F. 2022. “On the Inconsistency of Matching Without
Replacement.” Biometrika 109 (2): 551–58. https://doi.org/10.1093/biomet/asab035.
Sävje, Fredrik, Michael J. Higgins, and Jasjeet S. Sekhon. 2021.
“Generalized Full Matching.” Political Analysis 29
(4): 423–47. https://doi.org/10.1017/pan.2020.32.
Shadish, William R., and Peter M. Steiner. 2010. “A Primer on
Propensity Score Analysis.” Newborn and Infant Nursing
Reviews, Quantitative research methodology, 10 (1): 19–26. https://doi.org/10.1053/j.nainr.2009.12.010.
Sharma, Mayur, Truong H. Do, Elise F. Palzer, Jared D. Huling, and Clark
C. Chen. 2023. “Comparable Safety Profile Between Neuro-Oncology
Procedures Involving Stereotactic Needle Biopsy (SNB) Followed by Laser
Interstitial Thermal Therapy (LITT) and LITT Alone Procedures.”
Journal of Neuro-Oncology 162 (1): 147–56. https://doi.org/10.1007/s11060-023-04275-w.
Snowden, Jonathan M., Sherri Rose, and Kathleen M. Mortimer. 2011.
“Implementation of G-Computation on a Simulated Data Set:
Demonstration of a Causal Inference Technique.” American
Journal of Epidemiology 173 (7): 731–38. https://doi.org/10.1093/aje/kwq472.
Stefanski, Leonard A., and Dennis D. Boos. 2002. “The Calculus of
m-Estimation.” The American Statistician 56 (1): 29–38.
https://doi.org/10.1198/000313002753631330.
Stensrud, Mats J., and Miguel A. Hernán. 2020. “Why Test for
Proportional Hazards?” JAMA 323 (14): 1401–2. https://doi.org/10.1001/jama.2020.1267.
Strasser, Zachary H., Noah Greifer, Aboozar Hadavand, Shawn N. Murphy,
and Hossein Estiri. 2022. “Estimates of SARS-CoV-2 Omicron BA.2
Subvariant Severity in New England.” JAMA Network Open 5
(10): e2238354. https://doi.org/10.1001/jamanetworkopen.2022.38354.
Stuart, Elizabeth A. 2010. “Matching Methods for Causal Inference:
A Review and a Look Forward.” Statistical Science 25
(1): 1–21. https://doi.org/10.1214/09-STS313.
Stuart, Elizabeth A., and Kerry M. Green. 2008. “Using Full
Matching to Estimate Causal Effects in Nonexperimental Studies:
Examining the Relationship Between Adolescent Marijuana Use and Adult
Outcomes.” Developmental Psychology, New methods for new
questions in developmental psychology, 44 (2): 395–406. https://doi.org/10.1037/0012-1649.44.2.395.
Stuart, Elizabeth A., Brian K. Lee, and Finbarr P. Leacy. 2013.
“Prognostic Score-Based Balance Measures Can Be a Useful
Diagnostic for Propensity Score Methods in Comparative Effectiveness
Research.” Journal of Clinical Epidemiology 66 (8): S84.
https://doi.org/10.1016/j.jclinepi.2013.01.013.
Tchetgen, Eric J Tchetgen, and Tyler J VanderWeele. 2012. “On
Causal Inference in the Presence of Interference.”
Statistical Methods in Medical Research 21 (1): 55–75. https://doi.org/10.1177/0962280210386779.
Thoemmes, Felix J., and Anthony D. Ong. 2016. “A Primer on Inverse
Probability of Treatment Weighting and Marginal Structural
Models.” Emerging Adulthood 4 (1): 40–59. https://doi.org/10.1177/2167696815621645.
VanderWeele, Tyler J. 2009. “On the Distinction Between
Interaction and Effect Modification.” Epidemiology 20
(6): 863–71. https://www.jstor.org/stable/25662776.
———. 2019. “Principles of Confounder Selection.”
European Journal of Epidemiology 34 (3): 211–19. https://doi.org/10.1007/s10654-019-00494-6.
VanderWeele, Tyler J., and Peng Ding. 2017. “Sensitivity Analysis
in Observational Research: Introducing the E-Value.” Annals
of Internal Medicine 167 (4): 268. https://doi.org/10.7326/M16-2607.
VanderWeele, Tyler J., Maya B. Mathur, and Peng Ding. 2019.
“Correcting Misinterpretations of the e-Value.” Annals
of Internal Medicine 170 (2): 131–32. https://doi.org/10.7326/M18-3112.
Vansteelandt, Stijn, and Niels Keiding. 2011. “Invited Commentary:
G-Computationlost in Translation?” American
Journal of Epidemiology 173 (7): 739–42. https://doi.org/10.1093/aje/kwq474.
Visconti, Giancarlo, and José R. Zubizarreta. 2018. “Handling
Limited Overlap in Observational Studies with Cardinality
Matching.” Observational Studies 4 (1): 217–49. https://doi.org/10.1353/obs.2018.0012.
Wan, Fei. 2019. “Matched or Unmatched Analyses with
Propensity-Scorematched Data?” Statistics in Medicine 38
(2): 289–300. https://doi.org/10.1002/sim.7976.
Westreich, Daniel, and Stephen R. Cole. 2010. “Invited Commentary:
Positivity in Practice.” American Journal of
Epidemiology 171 (6): 674–77. https://doi.org/10.1093/aje/kwp436.
Westreich, Daniel, and Sander Greenland. 2013. “The
Table 2 Fallacy: Presenting and
Interpreting Confounder and Modifier
Coefficients.” American Journal of Epidemiology
177 (4): 292–98. https://doi.org/10.1093/aje/kws412.
Wu, Xiao, Fabrizia Mealli, Marianthi-Anna Kioumourtzoglou, Francesca
Dominici, and Danielle Braun. 2022. “Matching on Generalized
Propensity Scores with Continuous Exposures.” Journal of the
American Statistical Association 0 (0): 1–29. https://doi.org/10.1080/01621459.2022.2144737.
Zakrison, T. L., Peter C. Austin, and V. A. McCredie. 2018. “A
Systematic Review of Propensity Score Methods in the Acute Care Surgery
Literature: Avoiding the Pitfalls and Proposing a Set of Reporting
Guidelines.” European Journal of Trauma and Emergency
Surgery 44 (3): 385–95. https://doi.org/10.1007/s00068-017-0786-6.
Zhao, Qingyuan, and Daniel Percival. 2017. “Entropy Balancing Is
Doubly Robust.” Journal of Causal Inference 5 (1). https://doi.org/10.1515/jci-2016-0010.
Zhu, Yeying, Donna L. Coffman, and Debashis Ghosh. 2015. “A
Boosting Algorithm for Estimating Generalized Propensity Scores with
Continuous Treatments.” Journal of Causal Inference 3
(1). https://doi.org/10.1515/jci-2014-0022.
Zubizarreta, José R. 2015. “Stable Weights That Balance Covariates
for Estimation with Incomplete Outcome Data.” Journal of the
American Statistical Association 110 (511): 910–22. https://doi.org/10.1080/01621459.2015.1023805.
Zubizarreta, José R., Ricardo D. Paredes, and Paul R. Rosenbaum. 2014.
“Matching for Balance, Pairing for Heterogeneity in an
Observational Study of the Effectiveness of for-Profit and
Not-for-Profit High Schools in Chile.” The
Annals of Applied Statistics 8 (1): 204–31. https://doi.org/10.1214/13-AOAS713.