
Math Prefresher for Political Scientists

July 2024

Table of contents

About this Booklet 10
Authors and Contributors . 10
Contributing . 11

Pre-Prefresher Exercises 12
Linear Algebra . 12

Vectors . 12
Matrices . 13

Operations . 14
Summation . 14
Products . 14
Logs and exponents . 14

Limits . 15
Calculus . 15
Optimization . 15
Probability . 16

I Math 17

1 Functions and Operations 18
1.1 Summation Operators ∑ and ∏ . 18
1.2 Introduction to Functions . 20
1.3 log and exp . 22
1.4 Graphing Functions . 24
1.5 Solving for Variables and Finding Roots 24
1.6 Sets . 25
Answers to Examples and Exercises . 26

2 Limits 28
Example: The Central Limit Theorem . 28
Example: The Law of Large Numbers . 29
2.1 Sequences . 30
2.2 The Limit of a Sequence . 30
2.3 Limits of a Function . 33

2

2.4 Continuity . 35
Answers to Examples . 37

3 Calculus 39
Example: The Mean is a Type of Integral 39
3.1 Derivatives . 40

Properties of derivatives . 40
3.2 Higher-Order Derivatives (Derivatives of Derivatives of Derivatives) . 43
3.3 Composite Functions and the Chain Rule 44
3.4 Derivatives of natural logs and the exponent 45

Derivatives of natural exponential function (𝑒) 46
Derivatives of log . 46
Outline of Proof . 48

3.5 Partial Derivatives . 49
3.6 Taylor Series Approximation . 50
3.7 The Indefinite Integration . 51

Common Rules of Integration . 52
3.8 The Definite Integral: The Area under the Curve 53

Common Rules for Definite Integrals 56
3.9 Integration by Substitution . 57
3.10 Integration by Parts . 59
Answers to Examples and Exercises . 60

4 Optimization 64
Example: Meltzer-Richard . 64
4.1 Maxima and Minima . 67
4.2 Concavity of a Function . 69

Quadratic Forms . 70
Definiteness of Quadratic Forms . 71

4.3 FOC and SOC . 72
First Order Conditions . 72
Second Order Conditions . 73
Definiteness and Concavity . 75

4.4 Global Maxima and Minima . 75
4.5 Constrained Optimization . 77

Equality Constraints . 79
4.6 Inequality Constraints . 82
4.7 Kuhn-Tucker Conditions . 85
4.8 Applications of Quadratic Forms . 89

5 Probability Theory 91
5.1 Counting rules . 91
5.2 Sets . 93

3

5.3 Probability . 94
Probability Definitions: Formal and Informal 94
Probability Operations . 96

5.4 Conditional Probability and Bayes Rule 96
5.5 Independence . 99
5.6 Random Variables . 100
5.7 Distributions . 101

Discrete Random Variables . 102
Continuous Random Variables . 103

5.8 Joint Distributions . 105
5.9 Expectation . 106

Expected Value of a Function . 107
Properties of Expected Values . 107

5.10 Variance and Covariance . 108
5.11 Special Distributions . 111
5.12 Summarizing Observed Events (Data) 113
5.13 Asymptotic Theory . 115

5.13.1 CLT and LLN . 115
5.13.2 Big 𝒪 Notation . 116

Answers to Examples and Exercises . 117

6 Linear Algebra 121
6.1 Working with Vectors . 121
6.2 Linear Independence . 123
6.3 Basics of Matrix Algebra . 124
6.4 Systems of Linear Equations . 127
6.5 Systems of Equations as Matrices . 128
6.6 Finding Solutions to Augmented Matrices and Systems of Equations 130
6.7 Rank — and Whether a System Has One, Infinite, or No Solutions . 132
6.8 The Inverse of a Matrix . 133
6.9 Linear Systems and Inverses . 134
6.10 Determinants . 135
6.11 Getting Inverse of a Matrix using its Determinant 137
Answers to Examples and Exercises . 138

II Programming 142

7 Orientation and Reading in Data 143
Motivation: Data and You . 143

Where are we? Where are we headed? 143
Check your understanding . 144

7.1 Orienting . 144

4

7.2 But what is R? . 149
7.3 The Computer and You: Giving Instructions 150
7.4 Base-R vs. tidyverse . 150

Dataframe subsetting . 151
Read data . 152
Visualization . 152

7.5 A is for Athens . 153
7.5.1 Locating the Data . 153
7.5.2 Reading in Data . 154
7.5.3 Inspecting . 155
7.5.4 Finding observations . 157
7.5.5 Extra: A sneak peak at Ober’s data 158

Exercises . 160

8 Manipulating Vectors and Matrices 163
Motivation . 163
Where are we? Where are we headed? 163

8.1 Read Data . 164
8.2 data.frame vs. matricies . 166
8.3 Handling matricies in R . 166
8.4 Variable Transformations . 170
8.5 Linear Combinations . 171
8.6 Matrix Basics . 173
Checkpoint . 181
Exercises . 182

9 Objects, Functions, Loops 187
Where are we? Where are we headed? 187

9.1 What is an object? . 187
9.1.1 lists . 188

9.2 Making your own objects . 190
9.2.1 Seeing R through objects . 191
9.2.2 Parsing an object by str()s 192

9.3 Types of variables . 193
9.3.1 scalars . 193
9.3.2 numeric vectors . 194
9.3.3 characters (aka strings) . 195

9.4 What is a function? . 196
9.4.1 Write your own function . 196

Checkpoint . 198
9.5 What is a package? . 198
9.6 Conditionals . 199
9.7 For-loops . 200

5

9.8 Nested Loops . 202
Exercises . 203

Exercise 1: Write your own function 203
Exercise 2: Using Loops . 203
Exercise 3: Storing information derived within loops in a global

dataframe . 203

10 Visualization 206
Motivation: The Law of the Census 206
Where are we? Where are we headed? 206
Check your understanding . 207

10.1 Read data . 207
10.2 Counting . 208
10.3 Tabulating . 208
10.4 base R graphics and ggplot . 210

10.4.1 base R . 210
10.4.2 ggplot . 211

10.5 Improving your graphics . 212
10.6 Cross-tabs . 214
10.7 Composition Plots . 219
10.8 Line graphs . 222
Exercises . 224

11 Joins and Merges, Wide and Long 226
Motivation . 226

Where are we? Where are we headed? . 226
11.1 Setting up . 227
11.2 Create a project directory . 227
11.3 Data Sources . 227
11.4 Example with 2 Datasets . 228
11.5 Loops . 229
11.6 Merging . 230
11.7 Main Project . 232

12 Simulation 234
Motivation: Simulation as an Analytical Tool 234
Where are we? Where are we headed? 235
Check your Understanding . 235

12.1 Pick a sample, any sample . 235
12.2 The sample() function . 235

12.2.1 Sampling rows from a dataframe 237
12.3 Random numbers from specific distributions 239

rbinom() . 239

6

runif() . 239
rnorm() . 240

12.4 r, p, and d . 241
12.5 set.seed() . 241
Exercises . 242

13 LaTeX and markdown 247
Where are we? Where are we headed? 247
Check your understanding . 248

13.1 Motivation . 248
13.2 Markdown . 248

13.2.1 Markdown commands . 249
13.2.2 Your own markdown . 249
13.2.3 Quarto . 249
13.2.4 A note on plain-text editors 250

13.3 LaTeX . 250
13.3.1 Compile online . 250
13.3.2 Compile your first LaTeX document locally 251
13.3.3 Main LaTeX commands . 251
Further Guides . 253

13.4 BibTeX . 253
13.4.1 What is a .bib file? . 253
13.4.2 What does LaTeX do with .bib files? 253
13.4.3 Stocking up on your .bib files 254

Exercise . 254
Concluding the Prefresher . 255

Your Feedback Matters . 256

14 Text 257
Where are we? Where are we headed? . 257
14.1 Review . 257
14.2 Goals for today . 258
14.3 Reading and writing text in R . 259
14.4 paste() and sprintf() . 259
14.5 Regular expressions . 260

14.5.1 Character classes . 262
14.5.2 Special Characters. 262
14.5.3 Conditional patterns . 263

14.6 Representing Text . 264
14.7 Important packages for parsing text 265
Exercises . 265

7

15 Command-line, git 268
15.1 Where are we? Where are we headed? 268
15.2 Check your understanding . 268
15.3 command-line . 268

15.3.1 command-line commands . 269
15.3.2 Running things via command-line 270
15.3.3 why do command-line? . 270

15.4 git . 271
15.4.1 Why version control? . 271
15.4.2 Open-source code at your fingertips 271
15.4.3 Commands in git . 272
15.4.4 GitHub Desktop . 272
15.4.5 Is git worth it? . 272

III Solutions 273

Solutions to Warmup Questions 274
Linear Algebra . 274

Vectors . 274
Matrices . 275

Operations . 276
Summation . 276
Products . 276
Logs and exponents . 277

Limits . 277
Calculus . 277
Optimization . 278
Probability . 278

Suggested Programming Solutions 279
Chapter Chapter 10: Visualization . 279

1 State Proportions . 279
2 Swing Justice . 280

Chapter Chapter 9: Objects and Loops 282
Checkpoint #3 . 282
Exercise 2 . 283
Exercise 3 . 284

Chapter Chapter 11: Demoratic Peace Project 285
Task 1: Data Input and Standardization 285
Task 2: Data Merging . 285
Task 3: Tabulations and Visualization 286

8

Chapter Chapter 12: Simulation . 286
Census Sampling . 286

9

About this Booklet

The Harvard Gov Prefresher is held each year in August. All relevant infor-
mation is on our website, including the day-to-day schedule. The 2024 Prefresher
instructors are António Câmara and Noah Dasanaike, and the faculty sponsor is
Gary King.

This booklet serves as the text for the Prefresher, available as a webpage updated
automatically and as a printable PDF updated manually. It is the product of
generations of Prefresher instructors. See below for a full list of instructors and
contributors.

For information about the role of the prefresher (or “math camp”) as a introduction
to graduate school, you may also be interested in “The Math Prefresher and The
Collective Future of Political Science Graduate Training”, in PS: Political Science
& Politics, by Gary King, Shiro Kuriwaki, and Yon Soo Park.

Authors and Contributors

• Past Authors and Instructors: Curt Signorino 1996-1997; Ken Scheve 1997-
1998; Eric Dickson 1998-2000; Orit Kedar 1999; James Fowler 2000-2001;
Kosuke Imai 2001-2002; Jacob Kline 2002; Dan Epstein 2003; Ben Ansell
2003-2004; Ryan Moore 2004-2005; Mike Kellermann 2005-2006; Ellie Powell
2006-2007; Jen Katkin 2007-2008; Patrick Lam 2008-2009; Viridiana Rios 2009-
2010; Jennifer Pan 2010-2011; Konstantin Kashin 2011-2012; Soledad Prilla-
man 2013; Stephen Pettigrew 2013-2014; Anton Strezhnev 2014-2015; Mayya
Komisarchik 2015-2016; Connor Jerzak 2016-2017; Shiro Kuriwaki 2017-2018;
Yon Soo Park 2018; Meg Schwenzfeier 2019; Shannon Parker 2019; Laura Roy-
den 2020-2021; Hunter Rendleman 2020-2021; Christopher T. Kenny 2022;
Jialu Li 2022; Sooahn Shin 2023; María Ballesteros 2023.

• Repository Maintainer: Christopher T. Kenny (christopherkenny)
• Past Repository Maintainers:

– Shiro Kurikwaki (kuriwaki) 2018-2023.

• Contributors: Thanks to Juan Dodyk (juandodyk), Hunter Rendleman
(hrendleman), and Tyler Simko (tylersimko) for contributing to the booklet
for corrections and improvements as students.

10

https://projects.iq.harvard.edu/prefresher
https://ascamara.github.io/
https://noahdasanaike.github.io/
https://gking.harvard.edu
https://iqss.github.io/prefresher/
https://github.com/IQSS/prefresher/releases
https://gking.harvard.edu/prefresher
https://gking.harvard.edu/prefresher
https://github.com/christopherkenny
https://github.com/kuriwaki
https://github.com/juandodyk
https://github.com/hrendleman
https://github.com/tylersimko

Contributing

We transitioned the booklet into a bookdown github repository in 2018. As we
update this version, we appreciate any bug reports or fixes appreciated.

All changes should be made in the .Rmd files in the project root. Changes pushed to
the repository will be checked for compilation by Travis-CI. To contribute a change,
please make a pull request and set the repository maintainer as the reviewer.

11

https://github.com/IQSS/prefresher

Pre-Prefresher Exercises

Before our first meeting, please try solving these questions. They are a sample of
the very beginning of each math section. We have provided links to the parts of the
book you can read if the concepts are new to you.

The goal of this “pre”-prefresher assignment is not to intimidate you but to set
common expectations so you can make the most out of the actual Prefresher. Even
if you do not understand some or all of these questions after skimming through the
linked sections, your effort will pay off and you will be better prepared for the math
prefresher. We are also open to adjusting these expectations based on feedback (this
class is for you), so please do not hesitate to write to the instructors for feedback.

Linear Algebra

Vectors

Define the vectors 𝑢 = ⎛⎜
⎝

1
2
3
⎞⎟
⎠
, 𝑣 = ⎛⎜

⎝

4
5
6
⎞⎟
⎠
, and the scalar 𝑐 = 2. Calculate the

following:

1. 𝑢 + 𝑣
2. 𝑐𝑣
3. 𝑢 ⋅ 𝑣

If you are having trouble with these problems, please review Section Section 6.1
“Working with Vectors” in Chapter Chapter 6.

Are the following sets of vectors linearly independent?

1. 𝑢 = (1
2), 𝑣 = (2

4)

2. 𝑢 = ⎛⎜
⎝

1
2
5
⎞⎟
⎠
, 𝑣 = ⎛⎜

⎝

3
7
9
⎞⎟
⎠

12

3. 𝑎 = ⎛⎜
⎝

2
−1
1

⎞⎟
⎠
, 𝑏 = ⎛⎜

⎝

3
−4
−2

⎞⎟
⎠
, 𝑐 = ⎛⎜

⎝

5
−10
−8

⎞⎟
⎠

(this requires some guesswork)

If you are having trouble with these problems, please review Section Section 6.2.

Matrices

A =
⎛⎜⎜⎜⎜
⎝

7 5 1
11 9 3
2 14 21
4 1 5

⎞⎟⎟⎟⎟
⎠

What is the dimensionality of matrix A?

What is the element 𝑎23 of A?

Given that

B =
⎛⎜⎜⎜⎜
⎝

1 2 8
3 9 11
4 7 5
5 1 9

⎞⎟⎟⎟⎟
⎠

What is A + B?

Given that

C = ⎛⎜
⎝

1 2 8
3 9 11
4 7 5

⎞⎟
⎠

What is A + C?

Given that

𝑐 = 2

What is 𝑐A?

If you are having trouble with these problems, please review Section Section 6.3.

13

Operations

Summation

Simplify the following

1.
3

∑
𝑖=1

𝑖

2.
3

∑
𝑘=1

(3𝑘 + 2)

3.
4

∑
𝑖=1

(3𝑘 + 𝑖 + 2)

Products

1.
3
∏
𝑖=1

𝑖

2.
3
∏

𝑘=1
(3𝑘 + 2)

To review this material, please see Section Section 1.1.

Logs and exponents

Simplify the following

1. 42

2. 4223

3. log10 100
4. log2 4
5. log 𝑒, where log is the natural log (also written as ln) – a log with base 𝑒, and

𝑒 is Euler’s constant
6. 𝑒𝑎𝑒𝑏𝑒𝑐, where 𝑎, 𝑏, 𝑐 are each constants
7. log 0
8. 𝑒0

9. 𝑒1

10. log 𝑒2

To review this material, please see Section Section 1.3

14

Limits

Find the limit of the following.

1. lim
𝑥→2

(𝑥 − 1)
2. lim

𝑥→2
(𝑥−2)(𝑥−1)

(𝑥−2)

3. lim
𝑥→2

𝑥2−3𝑥+2
𝑥−2

To review this material please see Section Section 2.3

Calculus

For each of the following functions 𝑓(𝑥), find the derivative 𝑓 ′(𝑥) or 𝑑
𝑑𝑥𝑓(𝑥)

1. 𝑓(𝑥) = 𝑐
2. 𝑓(𝑥) = 𝑥
3. 𝑓(𝑥) = 𝑥2

4. 𝑓(𝑥) = 𝑥3

5. 𝑓(𝑥) = 3𝑥2 + 2𝑥1/3

6. 𝑓(𝑥) = (𝑥3)(2𝑥4)

For a review, please see Section Section 3.1 - Section 3.2

Optimization

For each of the following functions 𝑓(𝑥), does a maximum and minimum exist in
the domain 𝑥 ∈ R? If so, for what are those values and for which values of 𝑥?

1. 𝑓(𝑥) = 𝑥
2. 𝑓(𝑥) = 𝑥2

3. 𝑓(𝑥) = −(𝑥 − 2)2

If you are stuck, please try sketching out a picture of each of the functions.

15

Probability

1. If there are 12 cards, numbered 1 to 12, and 4 cards are chosen, how many
distinct possible choices are there? (unordered, without replacement)

2. Let 𝐴 = {1, 3, 5, 7, 8} and 𝐵 = {2, 4, 7, 8, 12, 13}. What is 𝐴 ∪ 𝐵? What is
𝐴 ∩ 𝐵? If 𝐴 is a subset of the Sample Space 𝑆 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
what is the complement 𝐴𝐶?

3. If we roll two fair dice, what is the probability that their sum would be 11?
4. If we roll two fair dice, what is the probability that their sum would be 12?

For a review, please see Sections Section 5.2 - Section 5.3.

16

Part I

Math

17

1 Functions and Operations

Topics Dimensionality; Interval Notation for R1; Neighborhoods: Intervals, Disks,
and Balls; Introduction to Functions; Domain and Range; Some General Types of
Functions; log, ln, and exp; Other Useful Functions; Graphing Functions; Solving
for Variables; Finding Roots; Limit of a Function; Continuity; Sets, Sets, and More
Sets.

1.1 Summation Operators ∑ and ∏

Addition (+), Subtraction (-), multiplication and division are basic operations of
arithmetic – combining numbers. In statistics and calculus, we want to add a
sequence of numbers that can be expressed as a pattern without needing to write
down all its components. For example, how would we express the sum of all numbers
from 1 to 100 without writing a hundred numbers?

For this we use the summation operator ∑ and the product operator ∏.

Summation:

100
∑
𝑖=1

𝑥𝑖 = 𝑥1 + 𝑥2 + 𝑥3 + ⋯ + 𝑥100

The bottom of the ∑ symbol indicates an index (here, 𝑖), and its start value 1. At
the top is where the index ends. The notion of “addition” is part of the ∑ symbol.
The content to the right of the summation is the meat of what we add. While you
can pick your favorite index, start, and end values, the content must also have the
index.

•
𝑛

∑
𝑖=1

𝑐𝑥𝑖 = 𝑐
𝑛

∑
𝑖=1

𝑥𝑖

•
𝑛

∑
𝑖=1

(𝑥𝑖 + 𝑦𝑖) =
𝑛

∑
𝑖=1

𝑥𝑖 +
𝑛

∑
𝑖=1

𝑦𝑖

•
𝑛

∑
𝑖=1

𝑐 = 𝑛𝑐

18

Product:

𝑛
∏
𝑖=1

𝑥𝑖 = 𝑥1𝑥2𝑥3 ⋯ 𝑥𝑛

Properties:

•
𝑛
∏
𝑖=1

𝑐𝑥𝑖 = 𝑐𝑛
𝑛
∏
𝑖=1

𝑥𝑖

•
𝑛
∏
𝑖=𝑘

𝑐𝑥𝑖 = 𝑐𝑛−𝑘+1
𝑛
∏
𝑖=𝑘

𝑥𝑖

•
𝑛
∏
𝑖=1

(𝑥𝑖 + 𝑦𝑖) = a total mess

•
𝑛
∏
𝑖=1

𝑐 = 𝑐𝑛

Other Useful Functions

Factorials!:

𝑥! = 𝑥 ⋅ (𝑥 − 1) ⋅ (𝑥 − 2) ⋯ (1)

Modulo: Tells you the remainder when you divide the first number by the second.

• 17 mod 3 = 2
• 100 % 30 = 10

Example 1.1 (Operators).

1.
5

∑
𝑖=1

𝑖 =

2.
5
∏
𝑖=1

𝑖 =

3. 14 mod 4 =
4. 4! =

Exercise 1.1 (Operators). Let 𝑥1 = 4, 𝑥2 = 3, 𝑥3 = 7, 𝑥4 = 11, 𝑥5 = 2

1.
3

∑
𝑖=1

(7)𝑥𝑖

19

2.
5

∑
𝑖=1

2

3.
5
∏
𝑖=3

(2)𝑥𝑖

1.2 Introduction to Functions

A function (in R1) is a mapping, or transformation, that relates members of one
set to members of another set. For instance, if you have two sets: set 𝐴 and set 𝐵, a
function from 𝐴 to 𝐵 maps every value 𝑎 in set 𝐴 such that 𝑓(𝑎) ∈ 𝐵. Functions can
be “many-to-one”, where many values or combinations of values from set 𝐴 produce
a single output in set 𝐵, or they can be “one-to-one”, where each value in set 𝐴
corresponds to a single value in set 𝐵. A function by definition has a single function
value for each element of its domain. This means, there cannot be “one-to-many”
mapping.

Dimensionality: R1 is the set of all real numbers extending from −∞ to +∞ —
i.e., the real number line. R𝑛 is an 𝑛-dimensional space, where each of the 𝑛 axes
extends from −∞ to +∞.

• R1 is a one dimensional line.
• R2 is a two dimensional plane.
• R3 is a three dimensional space.

Points in R𝑛 are ordered 𝑛-tuples (just means an combination of 𝑛 elements where
order matters), where each element of the 𝑛-tuple represents the coordinate along
that dimension.

For example:

• R1: (3)
• R2: (-15, 5)
• R3: (86, 4, 0)

Examples of mapping notation:

Function of one variable: 𝑓 ∶ R1 → R1

• 𝑓(𝑥) = 𝑥 + 1. For each 𝑥 in R1, 𝑓(𝑥) assigns the number 𝑥 + 1.

Function of two variables: 𝑓 ∶ R2 → R1.

• 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. For each ordered pair (𝑥, 𝑦) in R2, 𝑓(𝑥, 𝑦) assigns the
number 𝑥2 + 𝑦2.

20

We often use variable 𝑥 as input and another 𝑦 as output, e.g. 𝑦 = 𝑥 + 1

Example 1.2 (Functions). For each of the following, state whether they are one-
to-one or many-to-one functions.

1. For 𝑥 ∈ [0, ∞], 𝑓 ∶ 𝑥 → 𝑥2 (this could also be written as 𝑓(𝑥) = 𝑥2).

2. For 𝑥 ∈ [−∞, ∞], 𝑓 ∶ 𝑥 → 𝑥2.

Exercise 1.2 (Functions). For each of the following, state whether they are one-to-
one or many-to-one functions.

1. For 𝑥 ∈ [−3, ∞], 𝑓 ∶ 𝑥 → 𝑥2.

2. For 𝑥 ∈ [0, ∞], 𝑓 ∶ 𝑥 → √𝑥

Some functions are defined only on proper subsets of R𝑛.

• Domain: the set of numbers in 𝑋 at which 𝑓(𝑥) is defined.
• Range: elements of 𝑌 assigned by 𝑓(𝑥) to elements of 𝑋, or

𝑓(𝑋) = {𝑦 ∶ 𝑦 = 𝑓(𝑥), 𝑥 ∈ 𝑋}

Most often used when talking about a function 𝑓 ∶ R1 → R1.
• Image: same as range, but more often used when talking about a function

𝑓 ∶ R𝑛 → R1.

Some General Types of Functions

Monomials: 𝑓(𝑥) = 𝑎𝑥𝑘

𝑎 is the coefficient. 𝑘 is the degree.

Examples: 𝑦 = 𝑥2, 𝑦 = −1
2𝑥3

Polynomials: sum of monomials.

Examples: 𝑦 = −1
2𝑥3 + 𝑥2, 𝑦 = 3𝑥 + 5

The degree of a polynomial is the highest degree of its monomial terms. Also, it’s
often a good idea to write polynomials with terms in decreasing degree.

Exponential Functions: Example: 𝑦 = 2𝑥

21

1.3 log and exp

Relationship of logarithmic and exponential functions:

𝑦 = log𝑎(𝑥) ⟺ 𝑎𝑦 = 𝑥

The log function can be thought of as an inverse for exponential functions. 𝑎 is
referred to as the “base” of the logarithm.

Common Bases: The two most common logarithms are base 10 and base 𝑒.

1. Base 10: 𝑦 = log10(𝑥) ⟺ 10𝑦 = 𝑥. The base 10 logarithm is often simply
written as “log(𝑥)” with no base denoted.

2. Base 𝑒: 𝑦 = log𝑒(𝑥) ⟺ 𝑒𝑦 = 𝑥. The base 𝑒 logarithm is referred to as the
“natural” logarithm and is written as “ln(𝑥)“.

Properties of exponential functions:

• 𝑎𝑥𝑎𝑦 = 𝑎𝑥+𝑦

• 𝑎−𝑥 = 1/𝑎𝑥

• 𝑎𝑥/𝑎𝑦 = 𝑎𝑥−𝑦

• (𝑎𝑥)𝑦 = 𝑎𝑥𝑦

• 𝑎0 = 1

Properties of logarithmic functions (any base):

Generally, when statisticians or social scientists write log(𝑥) they mean log𝑒(𝑥). In
other words: log𝑒(𝑥) ≡ ln(𝑥) ≡ log(𝑥)

log𝑎(𝑎𝑥) = 𝑥
and

𝑎log𝑎(𝑥) = 𝑥

• log(𝑥𝑦) = log(𝑥) + log(𝑦)
• log(𝑥𝑦) = 𝑦 log(𝑥)
• log(1/𝑥) = log(𝑥−1) = − log(𝑥)
• log(𝑥/𝑦) = log(𝑥 ⋅ 𝑦−1) = log(𝑥) + log(𝑦−1) = log(𝑥) − log(𝑦)
• log(1) = log(𝑒0) = 0

Change of Base Formula: Use the change of base formula to switch bases as
necessary:

log𝑏(𝑥) = log𝑎(𝑥)
log𝑎(𝑏)

22

Example:
log10(𝑥) = ln(𝑥)

ln(10)

You can use logs to go between sum and product notation. This will be particularly
important when you’re learning maximum likelihood estimation.

log(
𝑛

∏
𝑖=1

𝑥𝑖) = log(𝑥1 ⋅ 𝑥2 ⋅ 𝑥3 ⋯ ⋅ 𝑥𝑛)

= log(𝑥1) + log(𝑥2) + log(𝑥3) + ⋯ + log(𝑥𝑛)

=
𝑛

∑
𝑖=1

log(𝑥𝑖)

Therefore, you can see that the log of a product is equal to the sum of the logs. We
can write this more generally by adding in a constant, 𝑐:

log(
𝑛

∏
𝑖=1

𝑐𝑥𝑖) = log(𝑐𝑥1 ⋅ 𝑐𝑥2 ⋯ 𝑐𝑥𝑛)

= log(𝑐𝑛 ⋅ 𝑥1 ⋅ 𝑥2 ⋯ 𝑥𝑛)
= log(𝑐𝑛) + log(𝑥1) + log(𝑥2) + ⋯ + log(𝑥𝑛)

= 𝑛 log(𝑐) +
𝑛

∑
𝑖=1

log(𝑥𝑖)

Example 1.3 (Logarithmic Functions). Evaluate each of the following logarithms

1. log4(16)
2. log2(16)

Simplify the following logarithm. By “simplify”, we actually really mean - use as
many of the logarithmic properties as you can.

3. log4(𝑥3𝑦5)

Exercise 1.3 (Logarithmic Functions). Evaluate each of the following logarithms

1. log 3
2
(27

8)

23

Simplify each of the following logarithms. By “simplify”, we actually really mean -
use as many of the logarithmic properties as you can.

2. log(𝑥9𝑦5

𝑧3)
3. ln√𝑥𝑦

1.4 Graphing Functions

What can a graph tell you about a function?

• Is the function increasing or decreasing? Over what part of the domain?
• How “fast” does it increase or decrease?
• Are there global or local maxima and minima? Where?
• Are there inflection points?
• Is the function continuous?
• Is the function differentiable?
• Does the function tend to some limit?
• Other questions related to the substance of the problem at hand.

1.5 Solving for Variables and Finding Roots

Sometimes we’re given a function 𝑦 = 𝑓(𝑥) and we want to find how 𝑥 varies as a
function of 𝑦. Use algebra to move 𝑥 to the left hand side (LHS) of the equation
and so that the right hand side (RHS) is only a function of 𝑦.

Example 1.4 (Solving for Variables). Solve for x:

1. 𝑦 = 3𝑥 + 2
2. 𝑦 = 𝑒𝑥

Solving for variables is especially important when we want to find the roots of an
equation: those values of variables that cause an equation to equal zero. Especially
important in finding equilibria and in doing maximum likelihood estimation.

Procedure: Given 𝑦 = 𝑓(𝑥), set 𝑓(𝑥) = 0. Solve for 𝑥.
Multiple Roots:

𝑓(𝑥) = 𝑥2−9 ⟹ 0 = 𝑥2−9 ⟹ 9 = 𝑥2 ⟹ ±
√

9 =
√

𝑥2 ⟹ ±3 = 𝑥

24

Quadratic Formula: For quadratic equations 𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0, use the quadratic
formula:

𝑥 = −𝑏 ±
√

𝑏2 − 4𝑎𝑐
2𝑎

Exercise 1.4 (Finding Roots). Solve for x:

1. 𝑓(𝑥) = 3𝑥 + 2 = 0
2. 𝑓(𝑥) = 𝑥2 + 3𝑥 − 4 = 0
3. 𝑓(𝑥) = 𝑒−𝑥 − 10 = 0

1.6 Sets

Interior Point: The point x is an interior point of the set 𝑆 if x is in 𝑆 and if there
is some 𝜖-ball around x that contains only points in 𝑆. The interior of 𝑆 is the
collection of all interior points in 𝑆. The interior can also be defined as the union
of all open sets in 𝑆.

• If the set 𝑆 is circular, the interior points are everything inside of the circle,
but not on the circle’s rim.

• Example: The interior of the set {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 4} is {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 < 4}
.

Boundary Point: The point x is a boundary point of the set 𝑆 if every 𝜖-ball
around x contains both points that are in 𝑆 and points that are outside 𝑆. The
boundary is the collection of all boundary points.

• If the set 𝑆 is circular, the boundary points are everything on the circle’s rim.
• Example: The boundary of {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 4} is {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 = 4}.

Open: A set 𝑆 is open if for each point x in 𝑆, there exists an open 𝜖-ball around
x completely contained in 𝑆.

• If the set 𝑆 is circular and open, the points contained within the set get
infinitely close to the circle’s rim, but do not touch it.

• Example: {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 < 4}

Closed: A set 𝑆 is closed if it contains all of its boundary points.

• Alternatively: A set is closed if its complement is open.
• If the set 𝑆 is circular and closed, the set contains all points within the rim as

well as the rim itself.

25

• Example: {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 4}
• Note: a set may be neither open nor closed. Example: {(𝑥, 𝑦) ∶ 2 < 𝑥2 + 𝑦2 ≤

4}

Complement: The complement of set 𝑆 is everything outside of 𝑆.

• If the set 𝑆 is circular, the complement of 𝑆 is everything outside of the circle.
• Example: The complement of {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 ≤ 4} is {(𝑥, 𝑦) ∶ 𝑥2 + 𝑦2 > 4}.

Empty: The empty (or null) set is a unique set that has no elements, denoted by
{} or ∅.

• The empty set is an example of a set that is open and closed, or a “clopen”
set.

• Examples: The set of squares with 5 sides; the set of countries south of the
South Pole.

Answers to Examples and Exercises

Answer to Example Example 1.1:

1. 1 + 2 + 3 + 4 + 5 = 15

2. 1 * 2 * 3 * 4 * 5 = 120

3. 2

4. 4 * 3 * 2 * 1 = 24

Answer to Exercise Exercise 1.1:

1. 7(4 + 3 + 7) = 98

2. 2 + 2 + 2 + 2 + 2 = 10

3. 23(7)(11)(2) = 1232

Answer to Example Example 1.2:

1. one-to-one

2. many-to-one

Answer to Exercise Exercise 1.2:

1. many-to-one

2. one-to-one

26

Answer to Example Example 1.3:

1. 2

2. 4

3. 3 log4(𝑥) + 5 log4(𝑦)

Answer to Exercise Exercise 1.3:

1. 3

2. 9 log(𝑥) + 5 log(𝑦) − 3 log(𝑧)
3. 1

2(ln𝑥 + ln 𝑦)

Answer to Example Example 1.4:

1. 𝑦 = 3𝑥 + 2 ⟹ −3𝑥 = 2 − 𝑦 ⟹ 3𝑥 = 𝑦 − 2 ⟹ 𝑥 = 1
3(𝑦 − 2)

2. 𝑥 = ln 𝑦

Answer to Exercise Exercise 1.4:

1. −2
3

2. x = {1, -4}

3. x = - ln 10

27

2 Limits

Solving limits, i.e. finding out the value of functions as its input moves closer to some
value, is important for the social scientist’s mathematical toolkit for two related
tasks. The first is for the study of calculus, which will be in turn useful to show
where certain functions are maximized or minimized. The second is for the study of
statistical inference, which is the study of inferring things about things you cannot
see by using things you can see.

Example: The Central Limit Theorem

Perhaps the most important theorem in statistics is the Central Limit Theorem,

Theorem 2.1 (Central Limit Theorem (i.i.d. case)). For any series of independent
and identically distributed random variables 𝑋1, 𝑋2, ⋯, we know the distribution of
its sum even if we do not know the distribution of 𝑋. The distribution of the sum
is a Normal distribution.

�̄�𝑛 − 𝜇
𝜎/√𝑛

𝑑−→ Normal(0, 1),

where 𝜇 is the mean of 𝑋 and 𝜎 is the standard deviation of 𝑋. The arrow is read
as “converges in distribution to”. Normal(0, 1) indicates a Normal Distribution with
mean 0 and variance 1.

That is, the limit of the distribution of the lefthand side is the distribution of the
righthand side.

The sign of a limit is the arrow “→”. Although we have not yet covered probability
(in Section @probability-theory) so we have not described what distributions and
random variables are, it is worth foreshadowing the Central Limit Theorem. The
Central Limit Theorem is powerful because it gives us a guarantee of what would
happen if 𝑛 → ∞, which in this case means we collected more data.

28

Example: The Law of Large Numbers

A finding that perhaps rivals the Central Limit Theorem is the Law of Large Num-
bers:

Theorem 2.2 ((Weak) Law of Large Numbers). For any draw of identically dis-
tributed independent variables with mean 𝜇, the sample average after 𝑛 draws, �̄�𝑛,
converges in probability to the true mean as 𝑛 → ∞:

lim
𝑛→∞

𝑃(|�̄�𝑛 − 𝜇| > 𝜀) = 0

A shorthand of which is �̄�𝑛
𝑝
−→ 𝜇, where the arrow is read as “converges in probability

to”.

Intuitively, the more data, the more accurate is your guess. For example, the Figure
Figure 2.1 shows how the sample average from many coin tosses converges to the
true value : 0.5.

Estimate at
n = 1,000:

0.487

0.00

0.25

0.50

0.75

1.00

0 250 500 750 1,000
n, or the number of times of a coin−flip experiment

E
st

im
at

e
of

 th
e

P
ro

ba
bi

lit
y

of
 H

ea
ds

 a
fte

r
n

tr
ia

ls

Figure 2.1: As the number of coin tosses goes to infinity, the average probabiity of
heads converges to 0.5

29

2.1 Sequences

We need a couple of steps until we get to limit theorems in probability. First we
will introduce a “sequence”, then we will think about the limit of a sequence, then
we will think about the limit of a function.

A sequence
{𝑥𝑛} = {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}

is an ordered set of real numbers, where 𝑥1 is the first term in the sequence and 𝑦𝑛
is the 𝑛th term. Generally, a sequence is infinite, that is it extends to 𝑛 = ∞. We
can also write the sequence as

{𝑥𝑛}∞
𝑛=1

where the subscript and superscript are read together as “from 1 to infinity.”

Example 2.1 (Sequences). How do these sequences behave?

1. {𝐴𝑛} = {2 − 1
𝑛2 }

2. {𝐵𝑛} = {𝑛2+1
𝑛 }

3. {𝐶𝑛} = {(−1)𝑛 (1 − 1
𝑛)}

We find the sequence by simply “plugging in” the integers into each 𝑛. The important
thing is to get a sense of how these numbers are going to change. Example 1’s
numbers seem to come closer and closer to 2, but will it ever surpass 2? Example
2’s numbers are also increasing each time, but will it hit a limit? What is the pattern
in Example 3? Graphing helps you make this point more clearly. See the sequence
of 𝑛 = 1, ...20 for each of the three examples in Figure Figure 2.2.

2.2 The Limit of a Sequence

The notion of “converging to a limit” is the behavior of the points in Example
Example 2.1. In some sense, that’s the counterfactual we want to know. What
happens as 𝑛 → ∞?

1. Sequences like 1 above that converge to a limit.
2. Sequences like 2 above that increase without bound.
3. Sequences like 3 above that neither converge nor increase without bound —

alternating over the number line.

30

1.00

1.25

1.50

1.75

2.00

5 10 15 20
n

A
n

5

10

15

20

5 10 15 20
n

B
n

−1.0

−0.5

0.0

0.5

1.0

5 10 15 20
n

C
n

Figure 2.2: Behavior of Some Sequences

Definition 2.1. The sequence {𝑦𝑛} has the limit 𝐿, which we write as

lim
𝑛→∞

𝑦𝑛 = 𝐿

, if for any 𝜖 > 0 there is an integer 𝑁 (which depends on 𝜖) with the property that
|𝑦𝑛 − 𝐿| < 𝜖 for each 𝑛 > 𝑁 . {𝑦𝑛} is said to converge to 𝐿. If the above does not
hold, then {𝑦𝑛} diverges.

We can also express the behavior of a sequence as bounded or not:

1. Bounded: if |𝑦𝑛| ≤ 𝐾 for all 𝑛
2. Monotonically Increasing: 𝑦𝑛+1 > 𝑦𝑛 for all 𝑛
3. Monotonically Decreasing: 𝑦𝑛+1 < 𝑦𝑛 for all 𝑛

A limit is unique: If {𝑦𝑛} converges, then the limit 𝐿 is unique.

If a sequence converges, then the sum of such sequences also converges. Let
lim

𝑛→∞
𝑦𝑛 = 𝑦 and lim

𝑛→∞
𝑧𝑛 = 𝑧. Then

1. lim
𝑛→∞

[𝑘𝑦𝑛 + ℓ𝑧𝑛] = 𝑘𝑦 + ℓ𝑧
2. lim

𝑛→∞
𝑦𝑛𝑧𝑛 = 𝑦𝑧

31

3. lim
𝑛→∞

𝑦𝑛
𝑧𝑛

= 𝑦
𝑧 , provided 𝑧 ≠ 0

This looks reasonable enough. The harder question, obviously is when the parts
of the fraction don’t converge. If lim𝑛→∞ 𝑦𝑛 = ∞ and lim𝑛→∞ 𝑧𝑛 = ∞, What is
lim𝑛→∞ 𝑦𝑛 − 𝑧𝑛? What is lim𝑛→∞

𝑦𝑛
𝑧𝑛
?

It is nice for a sequence to converge in limit. We want to know if complex-looking
sequences converge or not. The name of the game here is to break that complex
sequence up into sums of simple fractions where 𝑛 only appears in the denominator:
1
𝑛 , 1

𝑛2 , and so on. Each of these will converge to 0, because the denominator gets
larger and larger. Then, because of the properties above, we can then find the final
sequence.

Example 2.2 (Simplifying a Fraction into Sums). Find the limit of

lim
𝑛→∞

𝑛 + 3
𝑛 ,

Solution 2.1. At first glance, 𝑛 + 3 and 𝑛 both grow to ∞, so it looks like we need
to divide infinity by infinity. However, we can express this fraction as a sum, then
the limits apply separately:

lim
𝑛→∞

𝑛 + 3
𝑛 = lim

𝑛→∞
(1 + 3

𝑛) = lim
𝑛→∞

1⏟
1

+ lim
𝑛→∞

(3
𝑛)⏟⏟⏟⏟⏟

0

so, the limit is actually 1.

After some practice, the key to intuition is whether one part of the fraction grows
“faster” than another. If the denominator grows faster to infinity than the numerator,
then the fraction will converge to 0, even if the numerator will also increase to infinity.
In a sense, limits show how not all infinities are the same.

Exercise 2.1. Find the following limits of sequences, then explain in English the
intuition for why that is the case.

1. lim
𝑛→∞

2𝑛
𝑛2+1

2. lim
𝑛→∞

(𝑛3 − 100𝑛2)

32

2.3 Limits of a Function

We’ve now covered functions and just covered limits of sequences, so now is the time
to combine the two.

A function 𝑓 is a compact representation of some behavior we care about. Like
for sequences, we often want to know if 𝑓(𝑥) approaches some number 𝐿 as its
independent variable 𝑥 moves to some number 𝑐 (which is usually 0 or ±∞). If it
does, we say that the limit of 𝑓(𝑥), as 𝑥 approaches 𝑐, is 𝐿: lim

𝑥→𝑐
𝑓(𝑥) = 𝐿. Unlike a

sequence, 𝑥 is a continuous number, and we can move in decreasing order as well as
increasing.

For a limit 𝐿 to exist, the function 𝑓(𝑥) must approach 𝐿 from both the left (in-
creasing) and the right (decreasing).

Definition 2.2 (Limit of a function). Let 𝑓(𝑥) be defined at each point in some open
interval containing the point 𝑐. Then 𝐿 equals lim

𝑥→𝑐
𝑓(𝑥) if for any (small positive)

number 𝜖, there exists a corresponding number 𝛿 > 0 such that if 0 < |𝑥 − 𝑐| < 𝛿,
then |𝑓(𝑥) − 𝐿| < 𝜖.

A neat, if subtle result is that 𝑓(𝑥) does not necessarily have to be defined at 𝑐 for
lim
𝑥→𝑐

to exist.

Properties: Let 𝑓 and 𝑔 be functions with lim
𝑥→𝑐

𝑓(𝑥) = 𝑘 and lim
𝑥→𝑐

𝑔(𝑥) = ℓ.

1. lim
𝑥→𝑐

[𝑓(𝑥) + 𝑔(𝑥)] = lim
𝑥→𝑐

𝑓(𝑥) + lim
𝑥→𝑐

𝑔(𝑥)
2. lim

𝑥→𝑐
𝑘𝑓(𝑥) = 𝑘 lim

𝑥→𝑐
𝑓(𝑥)

3. lim
𝑥→𝑐

𝑓(𝑥)𝑔(𝑥) = [lim
𝑥→𝑐

𝑓(𝑥)] ⋅ [lim
𝑥→𝑐

𝑔(𝑥)]

4. lim
𝑥→𝑐

𝑓(𝑥)
𝑔(𝑥) =

lim
𝑥→𝑐

𝑓(𝑥)
lim
𝑥→𝑐

𝑔(𝑥) , provided lim
𝑥→𝑐

𝑔(𝑥) ≠ 0.

Simple limits of functions can be solved as we did limits of sequences. Just be careful
which part of the function is changing.

Example 2.3 (Limits of Functions). Find the limit of the following functions.

1. lim𝑥→𝑐 𝑘
2. lim𝑥→𝑐 𝑥
3. lim𝑥→2(2𝑥 − 3)
4. lim𝑥→𝑐 𝑥𝑛

33

Limits can get more complex in roughly two ways. First, the functions may become
large polynomials with many moving pieces. Second,the functions may become
discontinuous.

The function can be thought of as a more general or “smooth” version of sequences.
For example,

Exercise 2.2 (Limits of a Fraction of Functions). Find the limit of

lim
𝑥→∞

(𝑥4 + 3𝑥 − 99)(2 − 𝑥5)
(18𝑥7 + 9𝑥6 − 3𝑥2 − 1)(𝑥 + 1)

Now, the functions will become a bit more complex:

Exercise 2.3. Solve the following limits of functions

1. lim
𝑥→0

|𝑥|
2. lim

𝑥→0
(1 + 1

𝑥2)

So there are a few more alternatives about what a limit of a function could be:

1. Right-hand limit: The value approached by 𝑓(𝑥) when you move from right
to left.

2. Left-hand limit: The value approached by 𝑓(𝑥) when you move from left to
right.

3. Infinity: The value approached by 𝑓(𝑥) as x grows infinitely large. Sometimes
this may be a number; sometimes it might be ∞ or −∞.

4. Negative infinity: The value approached by 𝑓(𝑥) as x grows infinitely negative.
Sometimes this may be a number; sometimes it might be ∞ or −∞.

The distinction between left and right becomes important when the function is not
determined for some values of 𝑥. What are those cases in the examples below?

34

0

5

10

15

0 5 10 15
x

f(x
)

f(x) = x

−20

−10

0

10

20

−2 −1 0 1 2
x

f(x
)

f(x) =
1

x

Figure 2.3: Functions which are not defined in some areas

2.4 Continuity

To repeat a finding from the limits of functions: 𝑓(𝑥) does not necessarily have to
be defined at 𝑐 for lim

𝑥→𝑐
to exist. Functions that have breaks in their lines are called

discontinuous. Functions that have no breaks are called continuous. Continuity is a
concept that is more fundamental to, but related to that of “differentiability”, which
we will cover next in calculus.

Definition 2.3 (Continuity). Suppose that the domain of the function 𝑓 includes
an open interval containing the point 𝑐. Then 𝑓 is continuous at 𝑐 if lim

𝑥→𝑐
𝑓(𝑥) exists

and if lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐). Further, 𝑓 is continuous on an open interval (𝑎, 𝑏) if it is
continuous at each point in the interval.

To prove that a function is continuous for all points is beyond this practical intro-
duction to math, but the general intuition can be grasped by graphing.

Example 2.4 (Continuous and Discontinuous Functions). For each function, de-
termine if it is continuous or discontinuous.

35

1. 𝑓(𝑥) = √𝑥
2. 𝑓(𝑥) = 𝑒𝑥

3. 𝑓(𝑥) = 1 + 1
𝑥2

4. 𝑓(𝑥) = floor(𝑥).

The floor is the smaller of the two integers bounding a number. So floor(𝑥 =
2.999) = 2, floor(𝑥 = 2.0001) = 2, and floor(𝑥 = 2) = 2.

Solution 2.2. In Figure Figure 2.4, we can see that the first two functions are contin-
uous, and the next two are discontinuous. 𝑓(𝑥) = 1 + 1

𝑥2 is discontinuous at 𝑥 = 0,
and 𝑓(𝑥) = floor(𝑥) is discontinuous at each whole number.

0

1

2

3

0.0 2.5 5.0 7.5 10.0
x

f(x
)

f(x) = x

0

2

4

6

−2 −1 0 1 2
x

f(x
)

f(x) = ex

0

50

100

150

−4 −2 0 2 4
x

f(x
)

f(x) = 1 +
1

x2

0
1
2
3
4
5

0 1 2 3 4 5
x

f(x
)

f(x) = floor(x)

Figure 2.4: Continuous and Discontinuous Functions

Some properties of continuous functions:

1. If 𝑓 and 𝑔 are continuous at point 𝑐, then 𝑓 + 𝑔, 𝑓 − 𝑔, 𝑓 ⋅ 𝑔, |𝑓|, and 𝛼𝑓 are
continuous at point 𝑐 also. 𝑓/𝑔 is continuous, provided 𝑔(𝑐) ≠ 0.

2. Boundedness: If 𝑓 is continuous on the closed bounded interval [𝑎, 𝑏], then
there is a number 𝐾 such that |𝑓(𝑥)| ≤ 𝐾 for each 𝑥 in [𝑎, 𝑏].

3. Max/Min: If 𝑓 is continuous on the closed bounded interval [𝑎, 𝑏], then 𝑓 has
a maximum and a minimum on [𝑎, 𝑏]. They may be located at the end points.

36

Exercise 2.4 (Limit when Denominator converges to 0). Let

𝑓(𝑥) = 𝑥2 + 2𝑥
𝑥 .

1. Graph the function. Is it defined everywhere?
2. What is the functions limit at 𝑥 → 0?

Answers to Examples

Example Example 2.1

Solution 2.3.

1. {𝐴𝑛} = {2 − 1
𝑛2 } = {1, 7

4 , 17
9 , 31

16 , 49
25 , …} = 2

2. {𝐵𝑛} = {𝑛2+1
𝑛 } = {2, 5

2 , 10
3 , 17

4 ..., }
3. {𝐶𝑛} = {(−1)𝑛 (1 − 1

𝑛)} = {0, 1
2 , −2

3 , 3
4 , −4

5}

Exercise Exercise 2.1

Example Example 2.3

Solution 2.4.

1. 𝑘
2. 𝑐
3. lim𝑥→2(2𝑥 − 3) = 2 lim

𝑥→2
𝑥 − 3 lim

𝑥→2
1 = 1

4. lim𝑥→𝑐 𝑥𝑛 = lim
𝑥→𝑐

𝑥 ⋯ [lim
𝑥→𝑐

𝑥] = 𝑐 ⋯ 𝑐 = 𝑐𝑛

Exercise Exercise 2.2

Solution 2.5. Although this function seems large, the thing our eyes should focus on
is where the highest order polynomial remains. That will grow the fastest, so if the
highest order term is on the denominator, the fraction will converge to 0, if it is on
the numerator it will converge to negative infinity. Previewing the multiplication by
hand, we can see that the −𝑥9 on the numerator will be the largest power. So the
answer will be −∞. We can also confirm this by writing out fractions:

37

lim
𝑥→∞

(1 + 3
𝑥3 − 99

4𝑥4) (− 2
𝑥5 + 1)

(1 + 9
18𝑥 − 3

18𝑥5 − 1
18𝑥7) (1 + 1

𝑥)

× 𝑥4

1 × −𝑥5

1 × 1
18𝑥7 × 1

𝑥
=1 × lim

−𝑥→∞
𝑥
18

Exercise Exercise 2.4

Solution 2.6. See Figure Figure 2.5.

Divide each part by 𝑥, and we get 𝑥+ 2
𝑥 on the numerator, 1 on the denominator. So,

without worrying about a function being not defined, we can say lim𝑥→0 𝑓(𝑥) = 0.

−2

0

2

4

−4 −2 0 2
x

f(x
)

f(x) =
x2 + 2x

x2

Figure 2.5: A function undedefined at x = 0

38

3 Calculus

Calculus is a fundamental part of any type of statistics exercise. Although you
may not be taking derivatives and integral in your daily work as an analyst, calcu-
lus undergirds many concepts we use: maximization, expectation, and cumulative
probability.

Example: The Mean is a Type of Integral

The average of a quantity is a type of weighted mean, where the potential values are
weighted by their likelihood, loosely speaking. The integral is actually a general way
to describe this weighted average when there are conceptually an infinite number of
potential values.

If 𝑋 is a continuous random variable, its expected value 𝐸(𝑋) – the center of mass
– is given by

𝐸(𝑋) = ∫
∞

−∞
𝑥𝑓(𝑥)𝑑𝑥

where 𝑓(𝑥) is the probability density function of 𝑋.

This is a continuous version of the case where 𝑋 is discrete, in which case

𝐸(𝑋) =
∞

∑
𝑗=1

𝑥𝑗𝑃(𝑋 = 𝑥𝑗)

even more concretely, if the potential values of 𝑋 are finite, then we can write out
the expected value as a weighted mean, where the weights is the probability that
the value occurs.

𝐸(𝑋) = ∑
𝑥

⎛⎜
⎝

𝑥⏟
value

⋅ 𝑃 (𝑋 = 𝑥)⏟⏟⏟⏟⏟
weight, or PMF

⎞⎟
⎠

39

3.1 Derivatives

The derivative of 𝑓 at 𝑥 is its rate of change at 𝑥: how much 𝑓(𝑥) changes with
a change in 𝑥. The rate of change is a fraction — rise over run — but because
not all lines are straight and the rise over run formula will give us different values
depending on the range we examine, we need to take a limit (Section Chapter 2).

Definition 3.1 (Derivative). Let 𝑓 be a function whose domain includes an open
interval containing the point 𝑥. The derivative of 𝑓 at 𝑥 is given by

𝑑
𝑑𝑥𝑓(𝑥) = lim

ℎ→0
𝑓(𝑥 + ℎ) − 𝑓(𝑥)

(𝑥 + ℎ) − 𝑥 = lim
ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ

There are a two main ways to denote a derivative:

• Leibniz Notation: 𝑑
𝑑𝑥(𝑓(𝑥))

• Prime or Lagrange Notation: 𝑓 ′(𝑥)

If 𝑓(𝑥) is a straight line, the derivative is the slope. For a curve, the slope changes
by the values of 𝑥, so the derivative is the slope of the line tangent to the curve at
𝑥. See, For example, Figure Figure 3.1.

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

If 𝑓 ′(𝑥) exists at a point 𝑥0, then 𝑓 is said to be differentiable at 𝑥0. That also
implies that 𝑓(𝑥) is continuous at 𝑥0.

Properties of derivatives

Suppose that 𝑓 and 𝑔 are differentiable at 𝑥 and that 𝛼 is a constant. Then the
functions 𝑓 ± 𝑔, 𝛼𝑓 , 𝑓𝑔, and 𝑓/𝑔 (provided 𝑔(𝑥) ≠ 0) are also differentiable at 𝑥.
Additionally,

Constant rule:
[𝑘𝑓(𝑥)]′ = 𝑘𝑓 ′(𝑥)

Sum rule:
[𝑓(𝑥) ± 𝑔(𝑥)]′ = 𝑓 ′(𝑥) ± 𝑔′(𝑥)

40

−6

−3

0

3

6

−2 0 2
x

f(x
)

f(x) = 2x

1.950

1.975

2.000

2.025

−2 0 2
x

f '
 (x

)
−20
−10

0
10
20

−2 0 2
x

g(
x)

g(x) = x3

0

10

20

−2 0 2
x

g
' (

x)

Figure 3.1: The Derivative as a Slope

With a bit more algebra, we can apply the definition of derivatives to get a formula
for of the derivative of a product and a derivative of a quotient.

Product rule:
[𝑓(𝑥)𝑔(𝑥)]′ = 𝑓 ′(𝑥)𝑔(𝑥) + 𝑓(𝑥)𝑔′(𝑥)

Quotient rule:

[𝑓(𝑥)/𝑔(𝑥)]′ = 𝑓 ′(𝑥)𝑔(𝑥) − 𝑓(𝑥)𝑔′(𝑥)
[𝑔(𝑥)]2 , 𝑔(𝑥) ≠ 0

Finally, one way to think of the power of derivatives is that it takes a function a
notch down in complexity. The power rule applies to any higher-order function:

Power rule:
[𝑥𝑘]′ = 𝑘𝑥𝑘−1

For any real number 𝑘 (that is, both whole numbers and fractions). The power
rule is proved by induction, a neat method of proof used in many fundamental
applications to prove that a general statement holds for every possible case, even if
there are countably infinite cases. We’ll show a simple case where 𝑘 is an integer
here.

41

Proof of Power Rule by Induction. We would like to prove that

[𝑥𝑘]′ = 𝑘𝑥𝑘−1

for any integer 𝑘.
First, consider the first case (the base case) of 𝑘 = 1. We can show by the definition
of derivatives (setting 𝑓(𝑥) = 𝑥1 = 1) that

[𝑥1]′ = lim
ℎ→0

(𝑥 + ℎ) − 𝑥
(𝑥 + ℎ) − 𝑥 = 1.

Because 1 is also expressed as 1𝑥1−1, the statement we want to prove holds for the
case 𝑘 = 1.
Now, assume that the statement holds for some integer 𝑚. That is, assume

[𝑥𝑚]′ = 𝑚𝑥𝑚−1

Then, for the case 𝑚 + 1, using the product rule above, we can simplify

[𝑥𝑚+1]′ = [𝑥𝑚 ⋅ 𝑥]′
= (𝑥𝑚)′ ⋅ 𝑥 + (𝑥𝑚) ⋅ (𝑥)′

= 𝑚𝑥𝑚−1 ⋅ 𝑥 + 𝑥𝑚 ∵by previous assumption
= 𝑚𝑥𝑚 + 𝑥𝑚

= (𝑚 + 1)𝑥𝑚

= (𝑚 + 1)𝑥(𝑚+1)−1

Therefore, the rule holds for the case 𝑘 = 𝑚 + 1 once we have assumed it holds for
𝑘 = 𝑚. Combined with the first case, this completes proof by induction – we have
now proved that the statement holds for all integers 𝑘 = 1, 2, 3, ⋯.

To show that it holds for real fractions as well, we can prove expressing that exponent
by a fraction of two integers.

These “rules” become apparent by applying the definition of the derivative above to
each of the things to be “derived”, but these come up so frequently that it is best
to repeat until it is muscle memory.

Exercise 3.1 (Derivative of Polynomials). For each of the following functions, find
the first-order derivative 𝑓 ′(𝑥).

42

1. 𝑓(𝑥) = 𝑐
2. 𝑓(𝑥) = 𝑥
3. 𝑓(𝑥) = 𝑥2

4. 𝑓(𝑥) = 𝑥3

5. 𝑓(𝑥) = 1
𝑥2

6. 𝑓(𝑥) = (𝑥3)(2𝑥4)
7. 𝑓(𝑥) = 𝑥4 − 𝑥3 + 𝑥2 − 𝑥 + 1
8. 𝑓(𝑥) = (𝑥2 + 1)(𝑥3 − 1)
9. 𝑓(𝑥) = 3𝑥2 + 2𝑥1/3

10. 𝑓(𝑥) = 𝑥2+1
𝑥2−1

3.2 Higher-Order Derivatives (Derivatives of Derivatives of
Derivatives)

The first derivative is applying the definition of derivatives on the function, and it
can be expressed as

𝑓 ′(𝑥), 𝑦′, 𝑑
𝑑𝑥𝑓(𝑥), 𝑑𝑦

𝑑𝑥

We can keep applying the differentiation process to functions that are themselves
derivatives. The derivative of 𝑓 ′(𝑥) with respect to 𝑥, would then be

𝑓″(𝑥) = lim
ℎ→0

𝑓 ′(𝑥 + ℎ) − 𝑓 ′(𝑥)
ℎ

and we can therefore call it the Second derivative:

𝑓″(𝑥), 𝑦″, 𝑑2

𝑑𝑥2 𝑓(𝑥), 𝑑2𝑦
𝑑𝑥2

Similarly, the derivative of 𝑓″(𝑥) would be called the third derivative and is denoted
𝑓‴(𝑥). And by extension, the nth derivative is expressed as 𝑑𝑛

𝑑𝑥𝑛 𝑓(𝑥), 𝑑𝑛𝑦
𝑑𝑥𝑛 .

Example 3.1 (Succession of Derivatives).

43

𝑓(𝑥) = 𝑥3

𝑓 ′(𝑥) = 3𝑥2

𝑓 ′′(𝑥) = 6𝑥
𝑓 ′′′(𝑥) = 6

𝑓 ′′′′(𝑥) = 0

Earlier, in Section Section 3.1, we said that if a function differentiable at a given
point, then it must be continuous. Further, if 𝑓 ′(𝑥) is itself continuous, then 𝑓(𝑥) is
called continuously differentiable. All of this matters because many of our findings
about optimization (Section Chapter 4) rely on differentiation, and so we want our
function to be differentiable in as many layers. A function that is continuously
differentiable infinitly is called “smooth”. Some examples: 𝑓(𝑥) = 𝑥2, 𝑓(𝑥) = 𝑒𝑥.

3.3 Composite Functions and the Chain Rule

As useful as the above rules are, many functions you’ll see won’t fit neatly in each
case immediately. Instead, they will be functions of functions. For example, the
difference between 𝑥2 + 12 and (𝑥2 + 1)2 may look trivial, but the sum rule can
be easily applied to the former, while it’s actually not obvious what do with the
latter.

Composite functions are formed by substituting one function into another and
are denoted by

(𝑓 ∘ 𝑔)(𝑥) = 𝑓[𝑔(𝑥)].
To form 𝑓[𝑔(𝑥)], the range of 𝑔 must be contained (at least in part) within the
domain of 𝑓 . The domain of 𝑓 ∘ 𝑔 consists of all the points in the domain of 𝑔 for
which 𝑔(𝑥) is in the domain of 𝑓 .

Example 3.2. Let 𝑓(𝑥) = log𝑥 for 0 < 𝑥 < ∞ and 𝑔(𝑥) = 𝑥2 for −∞ < 𝑥 < ∞.

Then
(𝑓 ∘ 𝑔)(𝑥) = log𝑥2, −∞ < 𝑥 < ∞ − {0}

Also
(𝑔 ∘ 𝑓)(𝑥) = [log𝑥]2, 0 < 𝑥 < ∞

Notice that 𝑓 ∘ 𝑔 and 𝑔 ∘ 𝑓 are not the same functions.

44

With the notation of composite functions in place, now we can introduce a helpful
additional rule that will deal with a derivative of composite functions as a chain of
concentric derivatives.

Chain Rule:

Let 𝑦 = (𝑓 ∘ 𝑔)(𝑥) = 𝑓[𝑔(𝑥)]. The derivative of 𝑦 with respect to 𝑥 is

𝑑
𝑑𝑥{𝑓[𝑔(𝑥)]} = 𝑓 ′[𝑔(𝑥)]𝑔′(𝑥)

We can read this as: “the derivative of the composite function 𝑦 is the derivative of
𝑓 evaluated at 𝑔(𝑥), times the derivative of 𝑔.”
The chain rule can be thought of as the derivative of the “outside” times the deriva-
tive of the “inside”, remembering that the derivative of the outside function is
evaluated at the value of the inside function.

• The chain rule can also be written as

𝑑𝑦
𝑑𝑥 = 𝑑𝑦

𝑑𝑔(𝑥)
𝑑𝑔(𝑥)

𝑑𝑥

This expression does not imply that the 𝑑𝑔(𝑥)’s cancel out, as in fractions.
They are part of the derivative notation and you can’t separate them out or
cancel them.)

Example 3.3 (Composite Exponent). Find 𝑓 ′(𝑥) for 𝑓(𝑥) = (3𝑥2 + 5𝑥 − 7)6.

The direct use of a chain rule is when the exponent of is itself a function, so the
power rule could not have applied generally:

Generalized Power Rule:

If 𝑓(𝑥) = [𝑔(𝑥)]𝑝 for any rational number 𝑝,

𝑓 ′(𝑥) = 𝑝[𝑔(𝑥)]𝑝−1𝑔′(𝑥)

3.4 Derivatives of natural logs and the exponent

Natural logs and exponents (they are inverses of each other; see Section Section 1.3)
crop up everywhere in statistics. Their derivative is a special case from the above,
but quite elegant.

45

Theorem 3.1. The functions 𝑒𝑥 and the natural logarithm log(𝑥) are continuous
and differentiable in their domains, and their first derivative is

(𝑒𝑥)′ = 𝑒𝑥

log(𝑥)′ = 1
𝑥

Also, when these are composite functions, it follows by the generalized power rule
that

(𝑒𝑔(𝑥))′ = 𝑒𝑔(𝑥) ⋅ 𝑔′(𝑥)

(log 𝑔(𝑥))′ = 𝑔′(𝑥)
𝑔(𝑥) , if 𝑔(𝑥) > 0

We will relegate the proofs to small excerpts.

Derivatives of natural exponential function (𝑒)

To repeat the main rule in Theorem Theorem 3.1, the intuition is that

1. Derivative of 𝑒𝑥 is itself: 𝑑
𝑑𝑥𝑒𝑥 = 𝑒𝑥 (See Figure Figure 3.2.)

2. Same thing if there were a constant in front: 𝑑
𝑑𝑥𝛼𝑒𝑥 = 𝛼𝑒𝑥

3. Same thing no matter how many derivatives there are in front: 𝑑𝑛
𝑑𝑥𝑛 𝛼𝑒𝑥 = 𝛼𝑒𝑥

4. Chain Rule: When the exponent is a function of 𝑥, remember to take derivative
of that function and add to product. 𝑑

𝑑𝑥𝑒𝑔(𝑥) = 𝑒𝑔(𝑥)𝑔′(𝑥)

Example 3.4 (Derivative of exponents). Find the derivative for the following.

1. 𝑓(𝑥) = 𝑒−3𝑥

2. 𝑓(𝑥) = 𝑒𝑥2

3. 𝑓(𝑥) = (𝑥 − 1)𝑒𝑥

Derivatives of log

The natural log is the mirror image of the natural exponent and has mirroring
properties, again, to repeat the theorem,

1. log prime x is one over x: 𝑑
𝑑𝑥 log𝑥 = 1

𝑥 (Figure Figure 3.3.)
2. Exponents become multiplicative constants: 𝑑

𝑑𝑥 log𝑥𝑘 = 𝑑
𝑑𝑥𝑘 log𝑥 = 𝑘

𝑥

46

0

5

10

15

20

−2 0 2
x

f(x
)

f(x) = ex

0

5

10

15

20

−2 0 2
x

f '
 (x

)

f(x) = ex

Figure 3.2: Derivative of the Exponential Function

−3

−2

−1

0

1

0 1 2 3
x

f(x
)

f(x) = log(x)

0

10

20

30

40

0 1 2 3
x

f '
 (x

)

f(x) = log(x)

Figure 3.3: Derivative of the Natural Log

47

3. Chain rule again: 𝑑
𝑑𝑥 log𝑢(𝑥) = 𝑢′(𝑥)

𝑢(𝑥)
4. For any positive base 𝑏, 𝑑

𝑑𝑥𝑏𝑥 = (log 𝑏) (𝑏𝑥).

Example 3.5 (Derivative of logs). Find 𝑑𝑦/𝑑𝑥 for the following.

1. 𝑓(𝑥) = log(𝑥2 + 9)
2. 𝑓(𝑥) = log(log𝑥)
3. 𝑓(𝑥) = (log𝑥)2

4. 𝑓(𝑥) = log 𝑒𝑥

Outline of Proof

We actually show the derivative of the log first, and then the derivative of the
exponential naturally follows.

The general derivative of the log at any base 𝑎 is solvable by the definition of
derivatives.

(log𝑎 𝑥)′ = lim
ℎ→0

1
ℎ log𝑎 (1 + ℎ

𝑥)

Re-express 𝑔 = ℎ
𝑥 and get

(log𝑎 𝑥)′ = 1
𝑥 lim

𝑔→0
log𝑎(1 + 𝑔) 1

𝑔

= 1
𝑥 log𝑎 𝑒

By definition of 𝑒. As a special case, when 𝑎 = 𝑒, then (log𝑥)′ = 1
𝑥 .

Now let’s think about the inverse, taking the derivative of 𝑦 = 𝑎𝑥.

𝑦 = 𝑎𝑥

⇒ log 𝑦 = 𝑥 log 𝑎

⇒ 𝑦′

𝑦 = log 𝑎

⇒ 𝑦′ = 𝑦 log 𝑎

48

Then in the special case where 𝑎 = 𝑒,

(𝑒𝑥)′ = (𝑒𝑥)

3.5 Partial Derivatives

What happens when there’s more than variable that is changing?

If you can do ordinary derivatives, you can do partial derivatives: just
hold all the other input variables constant except for the one you’re
differentiating with respect to. (Joe Blitzstein’s Math Notes)

Suppose we have a function 𝑓 now of two (or more) variables and we want to
determine the rate of change relative to one of the variables. To do so, we would
find its partial derivative, which is defined similar to the derivative of a function of
one variable.

Partial Derivative: Let 𝑓 be a function of the variables (𝑥1, … , 𝑥𝑛). The partial
derivative of 𝑓 with respect to 𝑥𝑖 is

𝜕𝑓
𝜕𝑥𝑖

(𝑥1, … , 𝑥𝑛) = lim
ℎ→0

𝑓(𝑥1, … , 𝑥𝑖 + ℎ, … , 𝑥𝑛) − 𝑓(𝑥1, … , 𝑥𝑖, … , 𝑥𝑛)
ℎ

Only the 𝑖th variable changes — the others are treated as constants.

We can take higher-order partial derivatives, like we did with functions of a sin-
gle variable, except now the higher-order partials can be with respect to multiple
variables.

Example 3.6 (More than one type of partial). Notice that you can take partials
with regard to different variables.

Suppose 𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2. Then

49

𝜕𝑓
𝜕𝑥(𝑥, 𝑦) =
𝜕𝑓
𝜕𝑦 (𝑥, 𝑦) =

𝜕2𝑓
𝜕𝑥2 (𝑥, 𝑦) =

𝜕2𝑓
𝜕𝑥𝜕𝑦 (𝑥, 𝑦) =

Exercise 3.2. Let 𝑓(𝑥, 𝑦) = 𝑥3𝑦4 + 𝑒𝑥 − log 𝑦. What are the following partial
derivatives?

𝜕𝑓
𝜕𝑥(𝑥, 𝑦) =
𝜕𝑓
𝜕𝑦 (𝑥, 𝑦) =

𝜕2𝑓
𝜕𝑥2 (𝑥, 𝑦) =

𝜕2𝑓
𝜕𝑥𝜕𝑦 (𝑥, 𝑦) =

3.6 Taylor Series Approximation

A common form of approximation used in statistics involves derivatives. A Taylor
series is a way to represent common functions as infinite series (a sum of infinite
elements) of the function’s derivatives at some point 𝑎.
For example, Taylor series are very helpful in representing nonlinear (read: difficult)
functions as linear (read: manageable) functions. One can thus approximate func-
tions by using lower-order, finite series known as Taylor polynomials. If 𝑎 = 0,
the series is called a Maclaurin series.

Specifically, a Taylor series of a real or complex function 𝑓(𝑥) that is infinitely
differentiable in the neighborhood of point 𝑎 is:

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)
1! (𝑥 − 𝑎) + 𝑓″(𝑎)

2! (𝑥 − 𝑎)2 + ⋯

=
∞

∑
𝑛=0

𝑓 (𝑛)(𝑎)
𝑛! (𝑥 − 𝑎)𝑛

50

Taylor Approximation: We can often approximate the curvature of a function
𝑓(𝑥) at point 𝑎 using a 2nd order Taylor polynomial around point 𝑎:

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)
1! (𝑥 − 𝑎) + 𝑓″(𝑎)

2! (𝑥 − 𝑎)2 + 𝑅2

𝑅2 is the remainder (R for remainder, 2 for the fact that we took two derivatives)
and often treated as negligible, giving us:

𝑓(𝑥) ≈ 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)
2 (𝑥 − 𝑎)2

The more derivatives that are added, the smaller the remainder 𝑅 and the more
accurate the approximation. Proofs involving limits guarantee that the remainder
converges to 0 as the order of derivation increases.

3.7 The Indefinite Integration

So far, we’ve been interested in finding the derivative 𝑓 = 𝐹 ′ of a function 𝐹 .
However, sometimes we’re interested in exactly the reverse: finding the function 𝐹
for which 𝑓 is its derivative. We refer to 𝐹 as the antiderivative of 𝑓 .

Definition 3.2 (Antiderivative). The antiverivative of a function 𝑓(𝑥) is a differ-
entiable function 𝐹 whose derivative is 𝑓 .

𝐹 ′ = 𝑓.

Another way to describe is through the inverse formula. Let 𝐷𝐹 be the derivative
of 𝐹 . And let 𝐷𝐹(𝑥) be the derivative of 𝐹 evaluated at 𝑥. Then the antiderivative
is denoted by 𝐷−1 (i.e., the inverse derivative). If 𝐷𝐹 = 𝑓 , then 𝐹 = 𝐷−1𝑓 .
This definition bolsters the main takeaway about integrals and derivatives: They
are inverses of each other.

Exercise 3.3 (Antiderivative). Find the antiderivative of the following:

1. 𝑓(𝑥) = 1
𝑥2

2. 𝑓(𝑥) = 3𝑒3𝑥

51

We know from derivatives how to manipulate 𝐹 to get 𝑓 . But how do you express
the procedure to manipulate 𝑓 to get 𝐹? For that, we need a new symbol, which
we will call indefinite integration.

Definition 3.3 (Indefinite Integral). The indefinite integral of 𝑓(𝑥) is written

∫ 𝑓(𝑥)𝑑𝑥

and is equal to the antiderivative of 𝑓 .

Example 3.7. Draw the function 𝑓(𝑥) and its indefinite integral, ∫ 𝑓(𝑥)𝑑𝑥

𝑓(𝑥) = (𝑥2 − 4)

Solution 3.1. The Indefinite Integral of the function 𝑓(𝑥) = (𝑥2−4) can, for example,
be 𝐹(𝑥) = 1

3𝑥3 − 4𝑥. But it can also be 𝐹(𝑥) = 1
3𝑥3 − 4𝑥 + 1, because the constant

1 disappears when taking the derivative.

Some of these functions are plotted in the bottom panel of Figure Figure 3.4 as
dotted lines.

Notice from these examples that while there is only a single derivative for any
function, there are multiple antiderivatives: one for any arbitrary constant 𝑐. 𝑐 just
shifts the curve up or down on the 𝑦-axis. If more information is present about the
antiderivative — e.g., that it passes through a particular point — then we can solve
for a specific value of 𝑐.

Common Rules of Integration

Some common rules of integrals follow by virtue of being the inverse of a derivative.

1. Constants are allowed to slip out: ∫ 𝑎𝑓(𝑥)𝑑𝑥 = 𝑎 ∫ 𝑓(𝑥)𝑑𝑥
2. Integration of the sum is sum of integrations: ∫[𝑓(𝑥) + 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥)𝑑𝑥 +

∫ 𝑔(𝑥)𝑑𝑥
3. Reverse Power-rule: ∫ 𝑥𝑛𝑑𝑥 = 1

𝑛+1𝑥𝑛+1 + 𝑐
4. Exponents are still exponents: ∫ 𝑒𝑥𝑑𝑥 = 𝑒𝑥 + 𝑐
5. Recall the derivative of log(𝑥) is one over 𝑥, and so: ∫ 1

𝑥𝑑𝑥 = log𝑥 + 𝑐
6. Reverse chain-rule: ∫ 𝑒𝑓(𝑥)𝑓 ′(𝑥)𝑑𝑥 = 𝑒𝑓(𝑥) + 𝑐
7. More generally: ∫[𝑓(𝑥)]𝑛𝑓 ′(𝑥)𝑑𝑥 = 1

𝑛+1 [𝑓(𝑥)]𝑛+1 + 𝑐

52

0

5

10

−4 −2 0 2 4
x

f(x
)

−4

0

4

−4 −2 0 2 4
x

⌠ ⌡
f(x

)d
x

Figure 3.4: The Many Indefinite Integrals of a Function

8. Remember the derivative of a log of a function: ∫ 𝑓′(𝑥)
𝑓(𝑥) 𝑑𝑥 = log 𝑓(𝑥) + 𝑐

Example 3.8 (Common Integration). Simplify the following indefinite integrals:

• ∫ 3𝑥2𝑑𝑥
• ∫(2𝑥 + 1)𝑑𝑥
• ∫ 𝑒𝑥𝑒𝑒𝑥𝑑𝑥

3.8 The Definite Integral: The Area under the Curve

If there is a indefinite integral, there must be a definite integral. Indeed there is,
but the notion of definite integrals comes from a different objective: finding the are
a under a function. We will find, perhaps remarkably, that the formula we find to
get the sum turns out to be expressible by the anti-derivative.

Suppose we want to determine the area 𝐴(𝑅) of a region 𝑅 defined by a curve 𝑓(𝑥)
and some interval 𝑎 ≤ 𝑥 ≤ 𝑏.
One way to calculate the area would be to divide the interval 𝑎 ≤ 𝑥 ≤ 𝑏 into 𝑛
subintervals of length Δ𝑥 and then approximate the region with a series of rectangles,

53

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
x

f(x
)

Evaluating f with width = 1 intervals

0

25

50

75

100

0.0 2.5 5.0 7.5 10.0
x

f(x
)

Evaluating f with width = 0.1 intervals

Figure 3.5: The Riemann Integral as a Sum of Evaluations

where the base of each rectangle is Δ𝑥 and the height is 𝑓(𝑥) at the midpoint of
that interval. 𝐴(𝑅) would then be approximated by the area of the union of the
rectangles, which is given by

𝑆(𝑓, Δ𝑥) =
𝑛

∑
𝑖=1

𝑓(𝑥𝑖)Δ𝑥

and is called a Riemann sum.

As we decrease the size of the subintervals Δ𝑥, making the rectangles “thinner,” we
would expect our approximation of the area of the region to become closer to the
true area. This allows us to express the area as a limit of a series:

𝐴(𝑅) = lim
Δ𝑥→0

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)Δ𝑥

Figure Figure 3.5 shows that illustration. The curve depicted is 𝑓(𝑥) = −15(𝑥 −
5) + (𝑥 − 5)3 + 50. We want approximate the area under the curve between the 𝑥
values of 0 and 10. We can do this in blocks of arbitrary width, where the sum of
rectangles (the area of which is width times 𝑓(𝑥) evaluated at the midpoint of the
bar) shows the Riemann Sum. As the width of the bars Δ𝑥 becomes smaller, the
better the estimate of 𝐴(𝑅).

54

This is how we define the “Definite” Integral:

Definition 3.4 (The Definite Integral (Riemann)). If for a given function 𝑓 the
Riemann sum approaches a limit as Δ𝑥 → 0, then that limit is called the Riemann
integral of 𝑓 from 𝑎 to 𝑏. We express this with the ∫, symbol, and write

𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 = lim
Δ𝑥→0

𝑛
∑
𝑖=1

𝑓(𝑥𝑖)Δ𝑥

The most straightforward of a definite integral is the definite integral. That is, we
read

𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥

as the definite integral of 𝑓 from 𝑎 to 𝑏 and we defined as the area under the “curve”
𝑓(𝑥) from point 𝑥 = 𝑎 to 𝑥 = 𝑏.

The fundamental theorem of calculus shows us that this sum is, in fact, the an-
tiderivative.

Theorem 3.2 (First Fundamental Theorem of Calculus). Let the function 𝑓 be
bounded on [𝑎, 𝑏] and continuous on (𝑎, 𝑏). Then, suggestively, use the symbol 𝐹(𝑥)
to denote the definite integral from 𝑎 to 𝑥:

𝐹(𝑥) =
𝑥

∫
𝑎

𝑓(𝑡)𝑑𝑡, 𝑎 ≤ 𝑥 ≤ 𝑏

Then 𝐹(𝑥) has a derivative at each point in (𝑎, 𝑏) and

𝐹 ′(𝑥) = 𝑓(𝑥), 𝑎 < 𝑥 < 𝑏

That is, the definite integral function of 𝑓 is the one of the antiderivatives of some
𝑓.

This is again a long way of saying that that differentiation is the inverse of integration.
But now, we’ve covered definite integrals.

The second theorem gives us a simple way of computing a definite integral as a
function of indefinite integrals.

55

Theorem 3.3 (Second Fundamental Theorem of Calculus). Let the function 𝑓 be
bounded on [𝑎, 𝑏] and continuous on (𝑎, 𝑏). Let 𝐹 be any function that is continuous
on [𝑎, 𝑏] such that 𝐹 ′(𝑥) = 𝑓(𝑥) on (𝑎, 𝑏). Then

𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎)

So the procedure to calculate a simple definite integral
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 is then

1. Find the indefinite integral 𝐹(𝑥).
2. Evaluate 𝐹(𝑏) − 𝐹(𝑎).

Example 3.9 (Definite Integral of a monomial). Solve
3

∫
1

3𝑥2𝑑𝑥.

Let 𝑓(𝑥) = 3𝑥2.

Exercise 3.4. What is the value of
2

∫
−2

𝑒𝑥𝑒𝑒𝑥𝑑𝑥?

Common Rules for Definite Integrals

The area-interpretation of the definite integral provides some rules for simplifica-
tion.

1. There is no area below a point:
𝑎

∫
𝑎

𝑓(𝑥)𝑑𝑥 = 0

2. Reversing the limits changes the sign of the integral:
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 = −
𝑎

∫
𝑏

𝑓(𝑥)𝑑𝑥

3. Sums can be separated into their own integrals:
𝑏

∫
𝑎

[𝛼𝑓(𝑥) + 𝛽𝑔(𝑥)]𝑑𝑥 = 𝛼
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 + 𝛽
𝑏

∫
𝑎

𝑔(𝑥)𝑑𝑥

56

4. Areas can be combined as long as limits are linked:
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥 +
𝑐

∫
𝑏

𝑓(𝑥)𝑑𝑥 =
𝑐

∫
𝑎

𝑓(𝑥)𝑑𝑥

Exercise 3.5 (Definite integral shortcuts). Simplify the following definite integrals.

1.
1

∫
1

3𝑥2𝑑𝑥 =

2.
4

∫
0

(2𝑥 + 1)𝑑𝑥 =

3.
0

∫
−2

𝑒𝑥𝑒𝑒𝑥𝑑𝑥 +
2

∫
0

𝑒𝑥𝑒𝑒𝑥𝑑𝑥 =

3.9 Integration by Substitution

From the second fundamental theorem of calculus, we now that a quick way to get
a definite integral is to first find the indefinite integral, and then just plug in the
bounds.

Sometimes the integrand (the thing that we are trying to take an integral of) doesn’t
appear integrable using common rules and antiderivatives. A method one might try
is integration by substitution, which is related to the Chain Rule.

Suppose we want to find the indefinite integral

∫ 𝑔(𝑥)𝑑𝑥

but 𝑔(𝑥) is complex and none of the formulas we have seen so far seem to apply
immediately. The trick is to come up with a new function 𝑢(𝑥) such that

𝑔(𝑥) = 𝑓[𝑢(𝑥)]𝑢′(𝑥).

Why does an introduction of yet another function end of simplifying things? Let’s
refer to the antiderivative of 𝑓 as 𝐹 . Then the chain rule tells us that

𝑑
𝑑𝑥𝐹 [𝑢(𝑥)] = 𝑓[𝑢(𝑥)]𝑢′(𝑥)

. So, 𝐹[𝑢(𝑥)] is the antiderivative of 𝑔. We can then write

∫ 𝑔(𝑥)𝑑𝑥 = ∫ 𝑓[𝑢(𝑥)]𝑢′(𝑥)𝑑𝑥 = ∫ 𝑑
𝑑𝑥𝐹 [𝑢(𝑥)]𝑑𝑥 = 𝐹[𝑢(𝑥)] + 𝑐

57

To summarize, the procedure to determine the indefinite integral ∫ 𝑔(𝑥)𝑑𝑥 by the
method of substitution:

1. Identify some part of 𝑔(𝑥) that might be simplified by substituting in a single
variable 𝑢 (which will then be a function of 𝑥).

2. Determine if 𝑔(𝑥)𝑑𝑥 can be reformulated in terms of 𝑢 and 𝑑𝑢.
3. Solve the indefinite integral.
4. Substitute back in for 𝑥

Substitution can also be used to calculate a definite integral. Using the same proce-
dure as above,

𝑏

∫
𝑎

𝑔(𝑥)𝑑𝑥 =
𝑑

∫
𝑐

𝑓(𝑢)𝑑𝑢 = 𝐹(𝑑) − 𝐹(𝑐)

where 𝑐 = 𝑢(𝑎) and 𝑑 = 𝑢(𝑏).

Example 3.10 (Integration by Substitution I). Solve the indefinite integral

∫ 𝑥2√
𝑥 + 1𝑑𝑥.

For the above problem, we could have also used the substitution 𝑢 = √𝑥 + 1. Then
𝑥 = 𝑢2 − 1 and 𝑑𝑥 = 2𝑢𝑑𝑢. Substituting these in, we get

∫ 𝑥2√
𝑥 + 1𝑑𝑥 = ∫(𝑢2 − 1)2𝑢2𝑢𝑑𝑢

which when expanded is again a polynomial and gives the same result as above.

Another case in which integration by substitution is is useful is with a fraction.

Example 3.11 (Integration by Substitutiton II). Simplify

1

∫
0

5𝑒2𝑥

(1 + 𝑒2𝑥)1/3 𝑑𝑥.

58

3.10 Integration by Parts

Another useful integration technique is integration by parts, which is related to
the Product Rule of differentiation. The product rule states that

𝑑
𝑑𝑥(𝑢𝑣) = 𝑢 𝑑𝑣

𝑑𝑥 + 𝑣𝑑𝑢
𝑑𝑥

Integrating this and rearranging, we get

∫ 𝑢 𝑑𝑣
𝑑𝑥𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

𝑑𝑥𝑑𝑥
or

∫ 𝑢(𝑥)𝑣′(𝑥)𝑑𝑥 = 𝑢(𝑥)𝑣(𝑥) − ∫ 𝑣(𝑥)𝑢′(𝑥)𝑑𝑥

More easily remembered with the mnemonic “Ultraviolet Voodoo”:

∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

where 𝑑𝑢 = 𝑢′(𝑥)𝑑𝑥 and 𝑑𝑣 = 𝑣′(𝑥)𝑑𝑥.
For definite integrals, this is simply

𝑏

∫
𝑎

𝑢 𝑑𝑣
𝑑𝑥𝑑𝑥 = 𝑢𝑣|𝑏𝑎 −

𝑏

∫
𝑎

𝑣𝑑𝑢
𝑑𝑥𝑑𝑥

Our goal here is to find expressions for 𝑢 and 𝑑𝑣 that, when substituted into the
above equation, yield an expression that’s more easily evaluated.

Example 3.12 (Integration by Parts). Simplify the following integrals. These
seemingly obscure forms of integrals come up often when integrating distributions.

∫ 𝑥𝑒𝑎𝑥𝑑𝑥

Solution 3.2. Let 𝑢 = 𝑥 and 𝑑𝑣
𝑑𝑥 = 𝑒𝑎𝑥. Then 𝑑𝑢 = 𝑑𝑥 and 𝑣 = (1/𝑎)𝑒𝑎𝑥.

Substituting this into the integration by parts formula, we obtain

∫ 𝑥𝑒𝑎𝑥𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

= 𝑥 (1
𝑎𝑒𝑎𝑥) − ∫ 1

𝑎𝑒𝑎𝑥𝑑𝑥

= 1
𝑎𝑥𝑒𝑎𝑥 − 1

𝑎2 𝑒𝑎𝑥 + 𝑐

59

Exercise 3.6 (Integration by Parts II).

1. Integrate
∫ 𝑥𝑛𝑒𝑎𝑥𝑑𝑥

2. Integrate
∫ 𝑥3𝑒−𝑥2𝑑𝑥

Answers to Examples and Exercises

Exercise Exercise 3.1

Solution 3.3.

1. 𝑓 ′(𝑥) = 0
2. 𝑓 ′(𝑥) = 1
3. 𝑓 ′(𝑥) = 2𝑥3

4. 𝑓′(𝑥) = 3𝑥2

5. 𝑓′(𝑥) = −2𝑥−3

6. 𝑓′(𝑥) = 14𝑥6

7. 𝑓′(𝑥) = 4𝑥3 − 3𝑥2 + 2𝑥 − 1
8. 𝑓′(𝑥) = 5𝑥4 + 3𝑥2 − 2𝑥
9. 𝑓′(𝑥) = 6𝑥 + 2

3𝑥 −2
3

10. 𝑓′(𝑥) = −4𝑥
𝑥4−2𝑥2+1

Example Example 3.3

Solution 3.4. For convenience, define 𝑓(𝑧) = 𝑧6 and 𝑧 = 𝑔(𝑥) = 3𝑥2 + 5𝑥 − 7. Then,
𝑦 = 𝑓[𝑔(𝑥)] and

𝑑
𝑑𝑥𝑦 = 𝑓 ′(𝑧)𝑔′(𝑥)

= 6(3𝑥2 + 5𝑥 − 7)5(6𝑥 + 5)

Example Example 3.4

Solution 3.5.

1. Let 𝑢(𝑥) = −3𝑥. Then 𝑢′(𝑥) = −3 and 𝑓 ′(𝑥) = −3𝑒−3𝑥.
2. Let 𝑢(𝑥) = 𝑥2. Then 𝑢′(𝑥) = 2𝑥 and 𝑓 ′(𝑥) = 2𝑥𝑒𝑥2 .

60

Example Example 3.5

Solution 3.6.

1. Let 𝑢(𝑥) = 𝑥2 + 9. Then 𝑢′(𝑥) = 2𝑥 and

𝑑𝑦
𝑑𝑥 = 𝑢′(𝑥)

𝑢(𝑥) = 2𝑥
(𝑥2 + 9)

2. Let 𝑢(𝑥) = log𝑥. Then 𝑢′(𝑥) = 1/𝑥 and 𝑑𝑦
𝑑𝑥 = 1

(𝑥 log 𝑥) .
3. Use the generalized power rule.

𝑑𝑦
𝑑𝑥 = (2 log𝑥)

𝑥
4. We know that log 𝑒𝑥 = 𝑥 and that 𝑑𝑥/𝑑𝑥 = 1, but we can double check. Let

𝑢(𝑥) = 𝑒𝑥. Then 𝑢′(𝑥) = 𝑒𝑥 and 𝑑𝑦
𝑑𝑥 = 𝑢′(𝑥)

𝑢(𝑥) = 𝑒𝑥
𝑒𝑥 = 1.

Example Example 3.9

Solution 3.7. What is 𝐹(𝑥)? From the power rule, recognize 𝑑
𝑑𝑥𝑥3 = 3𝑥2 so

𝐹(𝑥) = 𝑥3

3

∫
1

𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥 = 3) − 𝐹(𝑥 − 1)

= 33 − 13

= 26

Example Example 3.10

Solution 3.8. The problem here is the
√𝑥 + 1 term. However, if the integrand had√𝑥 times some polynomial, then we’d be in business. Let’s try 𝑢 = 𝑥 + 1. Then

𝑥 = 𝑢 − 1 and 𝑑𝑥 = 𝑑𝑢. Substituting these into the above equation, we get

∫ 𝑥2√
𝑥 + 1𝑑𝑥 = ∫(𝑢 − 1)2√𝑢𝑑𝑢

= ∫(𝑢2 − 2𝑢 + 1)𝑢1/2𝑑𝑢

= ∫(𝑢5/2 − 2𝑢3/2 + 𝑢1/2)𝑑𝑢

61

We can easily integrate this, since it is just a polynomial. Doing so and substituting
𝑢 = 𝑥 + 1 back in, we get

∫ 𝑥2√
𝑥 + 1𝑑𝑥 = 2(𝑥 + 1)3/2 [1

7(𝑥 + 1)2 − 2
5(𝑥 + 1) + 1

3] + 𝑐

Example Example 3.11

Solution 3.9. When an expression is raised to a power, it is often helpful to use this
expression as the basis for a substitution. So, let 𝑢 = 1 + 𝑒2𝑥. Then 𝑑𝑢 = 2𝑒2𝑥𝑑𝑥
and we can set 5𝑒2𝑥𝑑𝑥 = 5𝑑𝑢/2. Additionally, 𝑢 = 2 when 𝑥 = 0 and 𝑢 = 1 + 𝑒2

when 𝑥 = 1. Substituting all of this in, we get

1

∫
0

5𝑒2𝑥

(1 + 𝑒2𝑥)1/3 𝑑𝑥 = 5
2

1+𝑒2

∫
2

𝑑𝑢
𝑢1/3

= 5
2

1+𝑒2

∫
2

𝑢−1/3𝑑𝑢

= 15
4 𝑢2/3∣

1+𝑒2

2
= 9.53

Exercise Exercise 3.6

1.
∫ 𝑥𝑛𝑒𝑎𝑥𝑑𝑥

Solution 3.10. As in the first problem, let

𝑢 = 𝑥𝑛, 𝑑𝑣 = 𝑒𝑎𝑥𝑑𝑥

Then 𝑑𝑢 = 𝑛𝑥𝑛−1𝑑𝑥 and 𝑣 = (1/𝑎)𝑒𝑎𝑥.

Substituting these into the integration by parts formula gives

∫ 𝑥𝑛𝑒𝑎𝑥𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

= 𝑥𝑛 (1
𝑎𝑒𝑎𝑥) − ∫ 1

𝑎𝑒𝑎𝑥𝑛𝑥𝑛−1𝑑𝑥

= 1
𝑎𝑥𝑛𝑒𝑎𝑥 − 𝑛

𝑎 ∫ 𝑥𝑛−1𝑒𝑎𝑥𝑑𝑥

62

Notice that we now have an integral similar to the previous one, but with 𝑥𝑛−1

instead of 𝑥𝑛.

For a given 𝑛, we would repeat the integration by parts procedure until the integrand
was directly integratable — e.g., when the integral became ∫ 𝑒𝑎𝑥𝑑𝑥.

2.
∫ 𝑥3𝑒−𝑥2𝑑𝑥

We could, as before, choose 𝑢 = 𝑥3 and 𝑑𝑣 = 𝑒−𝑥2𝑑𝑥. But we can’t then find 𝑣 —
i.e., integrating 𝑒−𝑥2𝑑𝑥 isn’t possible. Instead, notice that

𝑑
𝑑𝑥𝑒−𝑥2 = −2𝑥𝑒−𝑥2 ,

which can be factored out of the original integrand

∫ 𝑥3𝑒−𝑥2𝑑𝑥 = ∫ 𝑥2(𝑥𝑒−𝑥2)𝑑𝑥.

We can then let 𝑢 = 𝑥2 and 𝑑𝑣 = 𝑥𝑒−𝑥2𝑑𝑥. The𝑑𝑢 = 2𝑥𝑑𝑥 and 𝑣 = −1
2𝑒−𝑥2 .

Substituting these in, we have

∫ 𝑥3𝑒−𝑥2𝑑𝑥 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢

= 𝑥2 (−1
2𝑒−𝑥2) − ∫ (−1

2𝑒−𝑥2) 2𝑥𝑑𝑥

= −1
2𝑥2𝑒−𝑥2 + ∫ 𝑥𝑒−𝑥2𝑑𝑥

= −1
2𝑥2𝑒−𝑥2 − 1

2𝑒−𝑥2 + 𝑐

63

4 Optimization

To optimize, we use derivatives and calculus. Optimization is to find the maximum
or minimum of a functon, and to find what value of an input gives that extremum.
This has obvious uses in engineering. Many tools in the statistical toolkit use opti-
mization. One of the most common ways of estimating a model is through “Maxi-
mum Likelihood Estimation”, done via optimizing a function (the likelihood).

Optimization also comes up in Economics, Formal Theory, and Political Economy
all the time. A go-to model of human behavior is that they optimize a certain utility
function. Humans are not pure utility maximizers, of course, but nuanced models of
optimization – for example, adding constraints and adding uncertainty – will prove
to be quite useful.

Example: Meltzer-Richard

A standard backdrop in comparative political economy, the Meltzer-Richard (1981)
model states that redistribution of wealth should be higher in societies where the
median income is much smaller than the average income. More to the point, typically
income distributions wher ethe median is very different from the average is one of
high inequality. In other words, the Meltzer-Richard model says that highly unequal
economies will have more re-distribution of wealth. Why is that the case? Here is a
simplified example that is not the exact model by Meltzer and Richard1, but adapted
from Persson and Tabellini2

We will set the following things about our model human and model democracy.

• Individuals are indexed by 𝑖, and the total population is normalized to unity
(“1”) without loss of generality.

• 𝑈(⋅), u for “utility”, is a function that is concave and increasing, and expresses
the utility gained from public goods. This tells us that its first derivative is
positive, and its second derivative is negative.

1Allan H. Meltzer and Scott F. Richard. “A Rational Theory of the Size of Government”. Journal
of Political Economy 89:5 (1981), p. 914-927

2Adapted from Torsten Persson and Guido Tabellini, Political Economics: Explaining Economic
Policy. MIT Press.

64

https://www.jstor.org/stable/1830813

• 𝑦𝑖 is the income of person 𝑖
• 𝑊𝑖, w for “welfare”, is the welfare of person 𝑖
• 𝑐𝑖, c for “consumption”, is the consumption utility of person 𝑖

Also, the government is democratically elected and sets the following redistribution
output:

• 𝜏 , t for “tax”, is a flat tax rate between 0 and 1 that is applied to everyone’s
income.

• 𝑔, “g” for “goods”, is the amount of public goods that the government provides.

Suppose an individual’s welfare is given by:

𝑊𝑖 = 𝑐𝑖 + 𝑈(𝑔)

The consumption good is the person’s post-tax income.

𝑐𝑖 = (1 − 𝜏)𝑦𝑖

Income varies by person (In the next section we will cover probability, by then we
will know that we can express this by saying that 𝑦 is a random variable with the
cumulative distribution function 𝐹 , i.e. 𝑦 ∼ 𝐹 .). Every distribution has a mean and
an median.

• 𝐸(𝑦) is the average income of the society.
• med(𝑦) is the median income of the society.

What will happen in this economy? What will the tax rate be set too? How much
public goods will be provided?

We’ve skipped ahead of some formal theory results of demoracy, but hopefully these
are conceptually intuitive. First, if a democracy is competitive, there is no slack in
the government’s goods, and all tax revenue becomes a public good. So we can go
ahead and set the constraint:

𝑔 = ∑
𝑖

𝜏𝑦𝑖𝑃(𝑦𝑖) = 𝜏𝐸(𝑦)

We can do this trick because of the “normalizes to unity” setting, but this is a
general property of the average.

Now given this constraint we can re-write an individual’s welfare as

65

𝑊𝑖 = (1 − 𝑔
𝐸(𝑦)) 𝑦𝑖 + 𝑈(𝑔)

= (𝐸(𝑦) − 𝑔) 1
𝐸(𝑦)𝑦𝑖 + 𝑈(𝑔)

= (𝐸(𝑦) − 𝑔) 𝑦𝑖
𝐸(𝑦) + 𝑈(𝑔)

When is the individual’s welfare maximized, as a function of the public good?
𝑑
𝑑𝑔𝑊𝑖 = − 𝑦𝑖

𝐸(𝑦) + 𝑑
𝑑𝑔𝑈(𝑔)

𝑑
𝑑𝑔𝑊𝑖 = 0 when 𝑑

𝑑𝑔𝑈(𝑔) = 𝑦𝑖
𝐸(𝑦) , and so after expressing the derivative as 𝑈𝑔 = 𝑑

𝑑𝑔𝑈(𝑔)
for simplicity,

𝑔⋆
𝑖 = 𝑈𝑔

−1 (𝑦𝑖
𝐸(𝑦))

Now recall that because we assumed concavity, 𝑈𝑔 is a negative sloping function
whose value is positive. It can be shown that the inverse of such a function is
also decreasing. Thus an individual’s preferred level of government is determined
by a single continuum, the person’s income divided by the average income, and the
function is decreasing in 𝑦𝑖. This is consistent with our intuition that richer people
prefer less redistribution.

That was the amount for any given person. The government has to set one value of
𝑔, however. So what will that be? Now we will use another result, the median voter
theorem. This says that under certain general electoral conditions (single-peaked
preferences, two parties, majority rule), the policy winner will be that preferred by
the median person in the population. Because the only thing that determines a
person’s preferred level of government is 𝑦𝑖/𝐸(𝑦), we can presume that the median
voter, whose income is med(𝑦) will prevail in their preferred choice of government.
Therefore, we will see

𝑔⋆ = 𝑈𝑔
−1 (med(𝑦)

𝐸(𝑦))

What does this say about the level of redistribution we observe in an economy? The
higher the average income is than the median income, which often (but not always)
means more inequality, there should be more redistribution.

66

4.1 Maxima and Minima

The first derivative, 𝑓 ′(𝑥), quantifies the slope of a function. Therefore, it can be
used to check whether the function 𝑓(𝑥) at the point 𝑥 is increasing or decreasing
at 𝑥.

1. Increasing: 𝑓 ′(𝑥) > 0
2. Decreasing: 𝑓 ′(𝑥) < 0
3. Neither increasing nor decreasing: 𝑓 ′(𝑥) = 0 i.e. a maximum, minimum,

or saddle point

So for example, 𝑓(𝑥) = 𝑥2 + 2 and 𝑓 ′(𝑥) = 2𝑥

0

3

6

9

−2 0 2
x

f(x
)

−6

−3

0

3

6

−2 0 2
x

f '
 (x

)

Figure 4.1: Maxima and Minima

Exercise 4.1 (Plotting a maximum and minimum). Plot 𝑓(𝑥) = 𝑥3 + 𝑥2 + 2, plot
its derivative, and identify where the derivative is zero. Is there a maximum or
minimum?

The second derivative 𝑓″(𝑥) identifies whether the function 𝑓(𝑥) at the point 𝑥 is

1. Concave down: 𝑓″(𝑥) < 0

67

2. Concave up: 𝑓″(𝑥) > 0

Maximum (Minimum): 𝑥0 is a local maximum (minimum) if 𝑓(𝑥0) > 𝑓(𝑥)
(𝑓(𝑥0) < 𝑓(𝑥)) for all 𝑥 within some open interval containing 𝑥0. 𝑥0 is a global
maximum (minimum) if 𝑓(𝑥0) > 𝑓(𝑥) (𝑓(𝑥0) < 𝑓(𝑥)) for all 𝑥 in the domain of
𝑓 .
Given the function 𝑓 defined over domain 𝐷, all of the following are defined as
critical points:

1. Any interior point of 𝐷 where 𝑓 ′(𝑥) = 0.
2. Any interior point of 𝐷 where 𝑓 ′(𝑥) does not exist.
3. Any endpoint that is in 𝐷.

The maxima and minima will be a subset of the critical points.

Second Derivative Test of Maxima/Minima: We can use the second derivative
to tell us whether a point is a maximum or minimum of 𝑓(𝑥).

1. Local Maximum: 𝑓 ′(𝑥) = 0 and 𝑓″(𝑥) < 0
2. Local Minimum: 𝑓 ′(𝑥) = 0 and 𝑓″(𝑥) > 0
3. Need more info: 𝑓 ′(𝑥) = 0 and 𝑓″(𝑥) = 0

Global Maxima and Minima Sometimes no global max or min exists — e.g.,
𝑓(𝑥) not bounded above or below. However, there are three situations where we can
fairly easily identify global max or min.

1. Functions with only one critical point. If 𝑥0 is a local max or min of 𝑓
and it is the only critical point, then it is the global max or min.

2. Globally concave up or concave down functions. If 𝑓″(𝑥) is never zero,
then there is at most one critical point. That critical point is a global maximum
if 𝑓″ < 0 and a global minimum if 𝑓″ > 0.

3. Functions over closed and bounded intervals must have both a global
maximum and a global minimum.

Example 4.1 (Maxima and Minima by drawing). Find any critical points and
identify whether they are a max, min, or saddle point:

1. 𝑓(𝑥) = 𝑥2 + 2
2. 𝑓(𝑥) = 𝑥3 + 2
3. 𝑓(𝑥) = |𝑥2 − 1|, 𝑥 ∈ [−2, 2]

68

4.2 Concavity of a Function

Concavity helps identify the curvature of a function, 𝑓(𝑥), in 2 dimensional space.

Definition 4.1 (Concave Function). A function 𝑓 is strictly concave over the set S
if ∀𝑥1, 𝑥2 ∈ 𝑆 and ∀𝑎 ∈ (0, 1),

𝑓(𝑎𝑥1 + (1 − 𝑎)𝑥2) > 𝑎𝑓(𝑥1) + (1 − 𝑎)𝑓(𝑥2)

Any line connecting two points on a concave function will lie below the function.

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

−15

−10

−5

0

−4 −2 0 2 4
x

f(x
)

Concave

0

5

10

15

−4 −2 0 2 4
x

f(x
)

Convex

Definition 4.2 (Convex Function). Convex: A function f is strictly convex over
the set S if ∀𝑥1, 𝑥2 ∈ 𝑆 and ∀𝑎 ∈ (0, 1),

𝑓(𝑎𝑥1 + (1 − 𝑎)𝑥2) < 𝑎𝑓(𝑥1) + (1 − 𝑎)𝑓(𝑥2)

Any line connecting two points on a convex function will lie above the function.

69

Sometimes, concavity and convexity are strict of a requirement. For most purposes
of getting solutions, what we call quasi-concavity is enough.

Definition 4.3 (Quasiconcave Function). A function f is quasiconcave over the set
S if ∀𝑥1, 𝑥2 ∈ 𝑆 and ∀𝑎 ∈ (0, 1),

𝑓(𝑎𝑥1 + (1 − 𝑎)𝑥2) ≥ min(𝑓(𝑥1), 𝑓(𝑥2))

No matter what two points you select, the lowest valued point will always be an end
point.

Definition 4.4 (Quasiconvex). A function f is quasiconvex over the set 𝑆 if
∀𝑥1, 𝑥2 ∈ 𝑆 and ∀𝑎 ∈ (0, 1),

𝑓(𝑎𝑥1 + (1 − 𝑎)𝑥2) ≤ max(𝑓(𝑥1), 𝑓(𝑥2))

No matter what two points you select, the highest valued point will always be an
end point.

Second Derivative Test of Concavity: The second derivative can be used to
understand concavity.

If
𝑓″(𝑥) < 0 ⇒ Concave
𝑓″(𝑥) > 0 ⇒ Convex

Quadratic Forms

Quadratic forms is shorthand for a way to summarize a function. This is important
for finding concavity because

1. Approximates local curvature around a point — e.g., used to identify max vs
min vs saddle point.

2. They are simple to express even in 𝑛 dimensions:
3. Have a matrix representation.

Quadratic Form: A polynomial where each term is a monomial of degree 2 in any
number of variables:

70

One variable: 𝑄(𝑥1) = 𝑎11𝑥2
1

Two variables: 𝑄(𝑥1, 𝑥2) = 𝑎11𝑥2
1 + 𝑎12𝑥1𝑥2 + 𝑎22𝑥2

2

N variables: 𝑄(𝑥1, ⋯ , 𝑥𝑛) = ∑
𝑖≤𝑗

𝑎𝑖𝑗𝑥𝑖𝑥𝑗

which can be written in matrix terms:

One variable

𝑄(x) = 𝑥⊤
1 𝑎11𝑥1

N variables:

𝑄(x) = (𝑥1 𝑥2 ⋯ 𝑥𝑛)
⎛⎜⎜⎜⎜
⎝

𝑎11
1
2𝑎12 ⋯ 1

2𝑎1𝑛
1
2𝑎12 𝑎22 ⋯ 1

2𝑎2𝑛
⋮ ⋮ ⋱ ⋮

1
2𝑎1𝑛

1
2𝑎2𝑛 ⋯ 𝑎𝑛𝑛

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝑛

⎞⎟⎟⎟⎟
⎠

= x⊤Ax

For example, the Quadratic on R2:

𝑄(𝑥1, 𝑥2) = (𝑥1 𝑥2) (𝑎11
1
2𝑎12

1
2𝑎12 𝑎22

) (𝑥1
𝑥2

)

= 𝑎11𝑥2
1 + 𝑎12𝑥1𝑥2 + 𝑎22𝑥2

2

Definiteness of Quadratic Forms

When the function 𝑓(x) has more than two inputs, determining whether it has a
maxima and minima (remember, functions may have many inputs but they have
only one output) is a bit more tedious. Definiteness helps identify the curvature of
a function, 𝑄(x), in n dimensional space.

Definiteness: By definition, a quadratic form always takes on the value of zero
when 𝑥 = 0, 𝑄(x) = 0 at x = 0. The definiteness of the matrix A is determined by
whether the quadratic form 𝑄(x) = x⊤Ax is greater than zero, less than zero, or
sometimes both over all x ≠ 0.

71

4.3 FOC and SOC

We can see from a graphical representation that if a point is a local maxima or
minima, it must meet certain conditions regarding its derivative. These are so
commonly used that we refer these to “First Order Conditions” (FOCs) and “Second
Order Conditions” (SOCs) in the economic tradition.

First Order Conditions

When we examined functions of one variable 𝑥, we found critical points by taking
the first derivative, setting it to zero, and solving for 𝑥. For functions of 𝑛 variables,
the critical points are found in much the same way, except now we set the partial
derivatives equal to zero. Note: We will only consider critical points on the interior
of a function’s domain.

In a derivative, we only took the derivative with respect to one variable at a time.
When we take the derivative separately with respect to all variables in the elements
of x and then express the result as a vector, we use the term Gradient and Hessian.

Definition 4.5 (Gradient). Given a function 𝑓(x) in 𝑛 variables, the gradient ∇𝑓(x)
(the greek letter nabla) is a column vector, where the 𝑖th element is the partial
derivative of 𝑓(x) with respect to 𝑥𝑖:

∇𝑓(x) =
⎛⎜⎜⎜⎜⎜
⎝

𝜕𝑓(x)
𝜕𝑥1𝜕𝑓(x)
𝜕𝑥2
⋮

𝜕𝑓(x)
𝜕𝑥𝑛

⎞⎟⎟⎟⎟⎟
⎠

Before we know whether a point is a maxima or minima, if it meets the FOC it is
a “Critical Point”.

Definition 4.6 (Critical Point). x∗ is a critical point if and only if ∇𝑓(x∗) = 0. If
the partial derivative of f(x) with respect to 𝑥∗ is 0, then x∗ is a critical point. To
solve for x∗, find the gradient, set each element equal to 0, and solve the system of
equations.

x∗ =
⎛⎜⎜⎜⎜
⎝

𝑥∗
1

𝑥∗
2
⋮

𝑥∗
𝑛

⎞⎟⎟⎟⎟
⎠

72

Example 4.2. Example: Given a function 𝑓(x) = (𝑥1 − 1)2 + 𝑥2
2 + 1, find the (1)

Gradient and (2) Critical point of 𝑓(x).

Solution 4.1. Gradient

∇𝑓(x) = (
𝜕𝑓(x)
𝜕𝑥1𝜕𝑓(x)
𝜕𝑥2

)

= (2(𝑥1 − 1)
2𝑥2

)

Critical Point x∗ =

𝜕𝑓(x)
𝜕𝑥1

= 2(𝑥1 − 1) = 0

⇒ 𝑥∗
1 = 1

𝜕𝑓(x)
𝜕𝑥2

= 2𝑥2 = 0

⇒ 𝑥∗
2 = 0

So
x∗ = (1, 0)

Second Order Conditions

When we found a critical point for a function of one variable, we used the second
derivative as a indicator of the curvature at the point in order to determine whether
the point was a min, max, or saddle (second derivative test of concavity). For
functions of 𝑛 variables, we use second order partial derivatives as an indicator of
curvature.

Definition 4.7 (Hessian). Given a function 𝑓(x) in 𝑛 variables, the hessian H(x)
is an 𝑛 × 𝑛 matrix, where the (𝑖, 𝑗)th element is the second order partial derivative
of 𝑓(x) with respect to 𝑥𝑖 and 𝑥𝑗:

73

H(x) =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝜕2𝑓(x)
𝜕𝑥2

1

𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥1𝜕𝑥𝑛

𝜕2𝑓(x)
𝜕𝑥2𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥2

2
⋯ 𝜕2𝑓(x)

𝜕𝑥2𝜕𝑥𝑛
⋮ ⋮ ⋱ ⋮

𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥1

𝜕2𝑓(x)
𝜕𝑥𝑛𝜕𝑥2

⋯ 𝜕2𝑓(x)
𝜕𝑥2𝑛

⎞⎟⎟⎟⎟⎟⎟
⎠

Note that the hessian will be a symmetric matrix because 𝜕𝑓(x)
𝜕𝑥1𝜕𝑥2

= 𝜕𝑓(x)
𝜕𝑥2𝜕𝑥1

.

Also note that given that 𝑓(x) is of quadratic form, each element of the hessian will
be a constant.

These definitions will be employed when we determine the Second Order Condi-
tions of a function:

Given a function 𝑓(x) and a point x∗ such that ∇𝑓(x∗) = 0,

1. Hessian is Positive Definite ⟹ Strict Local Min
2. Hessian is Positive Semidefinite ∀x ∈ 𝐵(x∗, 𝜖)} ⟹ Local Min
3. Hessian is Negative Definite ⟹ Strict Local Max
4. Hessian is Negative Semidefinite ∀x ∈ 𝐵(x∗, 𝜖)} ⟹ Local Max
5. Hessian is Indefinite ⟹ Saddle Point

Example 4.3 (Max and min with two dimensions). We found that the only critical
point of 𝑓(x) = (𝑥1 −1)2 +𝑥2

2 +1 is at x∗ = (1, 0). Is it a min, max, or saddle point?

Solution 4.2. The Hessian is

H(x) = (2 0
0 2)

The Leading principal minors of the Hessian are 𝑀1 = 2; 𝑀2 = 4. Now we consider
Definiteness. Since both leading principal minors are positive, the Hessian is positive
definite.

Maxima, Minima, or Saddle Point? Since the Hessian is positive definite and the
gradient equals 0, 𝑥⋆ = (1, 0) is a strict local minimum.

Note: Alternate check of definiteness. Is H(x∗) ≥≤ 0 ∀ x ≠ 0

74

x⊤𝐻(x∗)x = (𝑥1 𝑥2)

= (2 0
0 2)

(𝑥1
𝑥2

) = 2𝑥2
1 + 2𝑥2

2

For any x ≠ 0, 2(𝑥2
1 + 𝑥2

2) > 0, so the Hessian is positive definite and x∗ is a strict
local minimum.

Definiteness and Concavity

Although definiteness helps us to understand the curvature of an n-dimensional
function, it does not necessarily tell us whether the function is globally concave or
convex.

We need to know whether a function is globally concave or convex to determine
whether a critical point is a global min or max. We can use the definiteness of the
Hessian to determine whether a function is globally concave or convex:

1. Hessian is Positive Semidefinite ∀x} ⟹ Globally Convex
2. Hessian is Negative Semidefinite ∀x} ⟹ Globally Concave

Notice that the definiteness conditions must be satisfied over the entire domain.

4.4 Global Maxima and Minima

Global Max/Min Conditions: Given a function 𝑓(x) and a point x∗ such that
∇𝑓(x∗) = 0,

1. 𝑓(x) Globally Convex ⟹ Global Min

2. 𝑓(x) Globally Concave ⟹ Global Max

Note that showing that H(x∗) is negative semidefinite is not enough to guarantee
x∗ is a local max. However, showing that H(x) is negative semidefinite for all x
guarantees that 𝑥∗ is a global max. (The same goes for positive semidefinite and
minima.)\

Example: Take 𝑓1(𝑥) = 𝑥4 and 𝑓2(𝑥) = −𝑥4. Both have 𝑥 = 0 as a critical point.
Unfortunately, 𝑓″

1 (0) = 0 and 𝑓″
2 (0) = 0, so we can’t tell whether 𝑥 = 0 is a min or

75

max for either. However, 𝑓″
1 (𝑥) = 12𝑥2 and 𝑓″

2 (𝑥) = −12𝑥2. For all 𝑥, 𝑓″
1 (𝑥) ≥ 0

and 𝑓″
2 (𝑥) ≤ 0 — i.e., 𝑓1(𝑥) is globally convex and 𝑓2(𝑥) is globally concave. So

𝑥 = 0 is a global min of 𝑓1(𝑥) and a global max of 𝑓2(𝑥).

Exercise 4.2. Given 𝑓(x) = 𝑥3
1 − 𝑥3

2 + 9𝑥1𝑥2, find any maxima or minima.

1. First order conditions.

a) Gradient ∇𝑓(x) =

(
𝜕𝑓

𝜕𝑥1𝜕𝑓
𝜕𝑥2

) = (3𝑥2
1 + 9𝑥2

−3𝑥2
2 + 9𝑥1

)

b) Critical Points x∗ =
Set the gradient equal to zero and solve for 𝑥1 and 𝑥2.We have two
equations and two unknowns. Solving for 𝑥1 and 𝑥2, we get two critical
points: x∗

1 = (0, 0) and x∗
2 = (3, −3).

3𝑥2
1 + 9𝑥2 = 0 ⇒ 9𝑥2 = −3𝑥2

1 ⇒ 𝑥2 = −1
3𝑥2

1

−3𝑥2
2 + 9𝑥1 = 0 ⇒ −3(−1

3𝑥2
1)2 + 9𝑥1 = 0

⇒ −1
3𝑥4

1 + 9𝑥1 = 0 ⇒ 𝑥3
1 = 27𝑥1 ⇒ 𝑥1 = 3

3(3)2 + 9𝑥2 = 0 ⇒ 𝑥2 = −3

2. Second order conditions.

a) Hessian H(x) =
(6𝑥1 9

9 −6𝑥2
)

b) Hessian H(x∗
1) =

(0 9
9 0)

c) Leading principal minors of H(x∗
1) =

𝑀1 = 0; 𝑀2 = −81

76

d) Definiteness of H(x∗
1)?

H(x∗
1) is indefinite

e) Maxima, Minima, or Saddle Point for x∗
1?

Since H(x∗
1) is indefinite, x∗

1 = (0, 0) is a saddle point.

f) Hessian H(x∗
2) =

(18 9
9 18)

g) Leading principal minors of H(x∗
2) =

𝑀1 = 18; 𝑀2 = 243

h) Definiteness of H(x∗
2)?

H(x∗
2) is positive definite

i) Maxima, Minima, or Saddle Point for x∗
2?

Since H(x∗
2) is positive definite, x∗

1 = (3, −3) is a strict local minimum

3. Global concavity/convexity.

a) Is f(x) globally concave/convex?
No. In evaluating the Hessians for x∗

1 and x∗
2 we saw that the Hessian is

not positive semidefinite at x = (0,0).

b) Are any x∗ global minima or maxima?
No. Since the function is not globally concave/convex, we can’t infer
that x∗

2 = (3, −3) is a global minimum. In fact, if we set 𝑥1 = 0, the
𝑓(x) = −𝑥3

2, which will go to −∞ as 𝑥2 → ∞.

4.5 Constrained Optimization

We have already looked at optimizing a function in one or more dimensions over
the whole domain of the function. Often, however, we want to find the maximum
or minimum of a function over some restricted part of its domain.

77

ex: Maximizing utility subject to a budget constraint

Figure 4.2: A typical Utility Function with a Budget Constraint

Types of Constraints: For a function 𝑓(𝑥1, … , 𝑥𝑛), there are two types of con-
straints that can be imposed:

1. Equality constraints: constraints of the form 𝑐(𝑥1, … , 𝑥𝑛) = 𝑟. Budget
constraints are the classic example of equality constraints in social science.

2. Inequality constraints: constraints of the form 𝑐(𝑥1, … , 𝑥𝑛) ≤ 𝑟. These
might arise from non-negativity constraints or other threshold effects.

In any constrained optimization problem, the constrained maximum will always be
less than or equal to the unconstrained maximum. If the constrained maximum is
less than the unconstrained maximum, then the constraint is binding. Essentially,
this means that you can treat your constraint as an equality constraint rather than
an inequality constraint.

For example, the budget constraint binds when you spend your entire budget. This
generally happens because we believe that utility is strictly increasing in consump-
tion, i.e. you always want more so you spend everything you have.

78

Any number of constraints can be placed on an optimization problem. When work-
ing with multiple constraints, always make sure that the set of constraints are not
pathological; it must be possible for all of the constraints to be satisfied simultane-
ously.

Set-up for Constrained Optimization:

max
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t. 𝑐(𝑥1, 𝑥2)

min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t. 𝑐(𝑥1, 𝑥2)

This tells us to maximize/minimize our function, 𝑓(𝑥1, 𝑥2), with respect to the choice
variables, 𝑥1, 𝑥2, subject to the constraint.

Example:

max
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) = −(𝑥2
1 + 2𝑥2

2) s.t. 𝑥1 + 𝑥2 = 4

It is easy to see that the unconstrained maximum occurs at (𝑥1, 𝑥2) = (0, 0), but
that does not satisfy the constraint. How should we proceed?

Equality Constraints

Equality constraints are the easiest to deal with because we know that the maximum
or minimum has to lie on the (intersection of the) constraint(s).

The trick is to change the problem from a constrained optimization problem in 𝑛
variables to an unconstrained optimization problem in 𝑛 + 𝑘 variables, adding one
variable for each equality constraint. We do this using a lagrangian multiplier.

Lagrangian function: The Lagrangian function allows us to combine the function
we want to optimize and the constraint function into a single function. Once we have
this single function, we can proceed as if this were an unconstrained optimization
problem.

For each constraint, we must include a Lagrange multiplier (𝜆𝑖) as an additional
variable in the analysis. These terms are the link between the constraint and the
Lagrangian function.

Given a two dimensional set-up:

max
𝑥1,𝑥2

/ min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t. 𝑐(𝑥1, 𝑥2) = 𝑎

79

We define the Lagrangian function 𝐿(𝑥1, 𝑥2, 𝜆1) as follows:

𝐿(𝑥1, 𝑥2, 𝜆1) = 𝑓(𝑥1, 𝑥2) − 𝜆1(𝑐(𝑥1, 𝑥2) − 𝑎)

More generally, in n dimensions:

𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘) = 𝑓(𝑥1, … , 𝑥𝑛) −
𝑘

∑
𝑖=1

𝜆𝑖(𝑐𝑖(𝑥1, … , 𝑥𝑛) − 𝑟𝑖)

Getting the sign right: Note that above we subtract the lagrangian term and
we subtract the constraint constant from the constraint function. Occasionally, you
may see the following alternative form of the Lagrangian, which is equivalent:

𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘) = 𝑓(𝑥1, … , 𝑥𝑛) +
𝑘

∑
𝑖=1

𝜆𝑖(𝑟𝑖 − 𝑐𝑖(𝑥1, … , 𝑥𝑛))

Here we add the lagrangian term and we subtract the constraining function from
the constraint constant.

Using the Lagrangian to Find the Critical Points: To find the critical points,
we take the partial derivatives of lagrangian function, 𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘), with
respect to each of its variables (all choice variables x and all lagrangian multipliers
�). At a critical point, each of these partial derivatives must be equal to zero, so we
obtain a system of 𝑛 + 𝑘 equations in 𝑛 + 𝑘 unknowns:

𝜕𝐿
𝜕𝑥1

= 𝜕𝑓
𝜕𝑥1

−
𝑘

∑
𝑖=1

𝜆𝑖
𝜕𝑐𝑖
𝜕𝑥1

= 0

⋮ =⋮
𝜕𝐿
𝜕𝑥𝑛

= 𝜕𝑓
𝜕𝑥𝑛

−
𝑘

∑
𝑖=1

𝜆𝑖
𝜕𝑐𝑖
𝜕𝑥𝑛

= 0

𝜕𝐿
𝜕𝜆1

= 𝑐1(𝑥𝑖, … , 𝑥𝑛) − 𝑟1 = 0

⋮ =⋮
𝜕𝐿
𝜕𝜆𝑘

= 𝑐𝑘(𝑥𝑖, … , 𝑥𝑛) − 𝑟𝑘 = 0

We can then solve this system of equations, because there are 𝑛 + 𝑘 equations and
𝑛 + 𝑘 unknowns, to calculate the critical point (𝑥∗

1, … , 𝑥∗
𝑛, 𝜆∗

1, … , 𝜆∗
𝑘).

Second-order Conditions and Unconstrained Optimization: There may be
more than one critical point, i.e. we need to verify that the critical point we find

80

is a maximum/minimum. Similar to unconstrained optimization, we can do this by
checking the second-order conditions.

Example 4.4 (Constrained optimization with two goods and a budget constraint).
Find the constrained optimization of

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2) s.t. 𝑥1 + 𝑥2 = 4

Solution 4.3.

1. Begin by writing the Lagrangian:

𝐿(𝑥1, 𝑥2, 𝜆) = −(𝑥2
1 + 2𝑥2

2) − 𝜆(𝑥1 + 𝑥2 − 4)

2. Take the partial derivatives and set equal to zero:

𝜕𝐿
𝜕𝑥1

= −2𝑥1 − 𝜆 = 0
𝜕𝐿
𝜕𝑥2

= −4𝑥2 − 𝜆 = 0
𝜕𝐿
𝜕𝜆 = −(𝑥1 + 𝑥2 − 4) = 0

3. Solve the system of equations: Using the first two partials, we see that 𝜆 =
−2𝑥1 and 𝜆 = −4𝑥2 Set these equal to see that 𝑥1 = 2𝑥2. Using the third
partial and the above equality, 4 = 2𝑥2 + 𝑥2 from which we get

𝑥∗
2 = 4/3, 𝑥∗

1 = 8/3, 𝜆 = −16/3

4. Therefore, the only critical point is 𝑥∗
1 = 8

3 and 𝑥∗
2 = 4

3

5. This gives 𝑓(8
3 , 4

3) = −96
9 , which is less than the unconstrained optimum

𝑓(0, 0) = 0

Notice that when we take the partial derivative of L with respect to the Lagrangian
multiplier and set it equal to 0, we return exactly our constraint! This is why signs
matter.

81

4.6 Inequality Constraints

Inequality constraints define the boundary of a region over which we seek to optimize
the function. This makes inequality constraints more challenging because we do not
know if the maximum/minimum lies along one of the constraints (the constraint
binds) or in the interior of the region.

We must introduce more variables in order to turn the problem into an unconstrained
optimization.

Slack: For each inequality constraint 𝑐𝑖(𝑥1, … , 𝑥𝑛) ≤ 𝑎𝑖, we define a slack variable
𝑠2

𝑖 for which the expression 𝑐𝑖(𝑥1, … , 𝑥𝑛) ≤ 𝑎𝑖 − 𝑠2
𝑖 would hold with equality. These

slack variables capture how close the constraint comes to binding. We use 𝑠2 rather
than 𝑠 to ensure that the slack is positive.

Slack is just a way to transform our constraints.

Given a two-dimensional set-up and these edited constraints:

max
𝑥1,𝑥2

/ min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t. 𝑐(𝑥1, 𝑥2) ≤ 𝑎1

Adding in Slack:

max
𝑥1,𝑥2

/ min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t. 𝑐(𝑥1, 𝑥2) ≤ 𝑎1 − 𝑠2
1

We define the Lagrangian function 𝐿(𝑥1, 𝑥2, 𝜆1, 𝑠1) as follows:

𝐿(𝑥1, 𝑥2, 𝜆1, 𝑠1) = 𝑓(𝑥1, 𝑥2) − 𝜆1(𝑐(𝑥1, 𝑥2) + 𝑠2
1 − 𝑎1)

More generally, in n dimensions:

𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘, 𝑠1, … , 𝑠𝑘) = 𝑓(𝑥1, … , 𝑥𝑛) −
𝑘

∑
𝑖=1

𝜆𝑖(𝑐𝑖(𝑥1, … , 𝑥𝑛) + 𝑠2
𝑖 − 𝑎𝑖)

Finding the Critical Points: To find the critical points, we take the partial
derivatives of the lagrangian function, 𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘, 𝑠1, … , 𝑠𝑘), with respect
to each of its variables (all choice variables 𝑥, all lagrangian multipliers 𝜆, and all
slack variables 𝑠). At a critical point, each of these partial derivatives must be equal
to zero, so we obtain a system of 𝑛 + 2𝑘 equations in 𝑛 + 2𝑘 unknowns:

82

𝜕𝐿
𝜕𝑥1

= 𝜕𝑓
𝜕𝑥1

−
𝑘

∑
𝑖=1

𝜆𝑖
𝜕𝑐𝑖
𝜕𝑥1

= 0

⋮ =⋮
𝜕𝐿
𝜕𝑥𝑛

= 𝜕𝑓
𝜕𝑥𝑛

−
𝑘

∑
𝑖=1

𝜆𝑖
𝜕𝑐𝑖
𝜕𝑥𝑛

= 0

𝜕𝐿
𝜕𝜆1

= 𝑐1(𝑥𝑖, … , 𝑥𝑛) + 𝑠2
1 − 𝑏1 = 0

⋮ =⋮
𝜕𝐿
𝜕𝜆𝑘

= 𝑐𝑘(𝑥𝑖, … , 𝑥𝑛) + 𝑠2
𝑘 − 𝑏𝑘 = 0

𝜕𝐿
𝜕𝑠1

= 2𝑠1𝜆1 = 0

⋮=⋮
𝜕𝐿
𝜕𝑠𝑘

= 2𝑠𝑘𝜆𝑘 = 0

Complementary slackness conditions: The last set of first order conditions
of the form 2𝑠𝑖𝜆𝑖 = 0 (the partials taken with respect to the slack variables) are
known as complementary slackness conditions. These conditions can be satisfied
one of three ways:

1. 𝜆𝑖 = 0 and 𝑠𝑖 ≠ 0: This implies that the slack is positive and thus the
constraint does not bind.

2. 𝜆𝑖 ≠ 0 and 𝑠𝑖 = 0: This implies that there is no slack in the constraint and
the constraint does bind.

3. 𝜆𝑖 = 0 and 𝑠𝑖 = 0: In this case, there is no slack but the constraint binds
trivially, without changing the optimum.

Example: Find the critical points for the following constrained optimization:

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2) s.t. 𝑥1 + 𝑥2 ≤ 4

1. Rewrite with the slack variables:

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2) s.t. 𝑥1 + 𝑥2 ≤ 4 − 𝑠2
1

2. Write the Lagrangian:

83

𝐿(𝑥1, 𝑥2, 𝜆1, 𝑠1) = −(𝑥2
1 + 2𝑥2

2) − 𝜆1(𝑥1 + 𝑥2 + 𝑠2
1 − 4)

3. Take the partial derivatives and set equal to 0:

𝜕𝐿
𝜕𝑥1

= −2𝑥1 − 𝜆1 = 0
𝜕𝐿
𝜕𝑥2

= −4𝑥2 − 𝜆1 = 0
𝜕𝐿
𝜕𝜆1

= −(𝑥1 + 𝑥2 + 𝑠2
1 − 4) = 0

𝜕𝐿
𝜕𝑠1

= −2𝑠1𝜆1 = 0

4. Consider all ways that the complementary slackness conditions are solved:

Hypothesis 𝑠1 𝜆1 𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
𝑠1 = 0 𝜆1 = 0 No solution
𝑠1 ≠ 0 𝜆1 = 0 2 0 0 0 0
𝑠1 = 0 𝜆1 ≠ 0 0 −16

3
8
3

4
3 −32

3
𝑠1 ≠ 0 𝜆1 ≠ 0 No solution

This shows that there are two critical points: (0, 0) and (8
3 , 4

3).

5. Find maximum: Looking at the values of 𝑓(𝑥1, 𝑥2) at the critical points, we
see that 𝑓(𝑥1, 𝑥2) is maximized at 𝑥∗

1 = 0 and 𝑥∗
2 = 0.

Exercise 4.3. Example: Find the critical points for the following constrained opti-
mization:

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2) s.t.
𝑥1 + 𝑥2 ≤ 4
𝑥1 ≥ 0
𝑥2 ≥ 0

1. Rewrite with the slack variables:

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2) s.t.
𝑥1 + 𝑥2 ≤ 4 − 𝑠2

1
−𝑥1 ≤ 0 − 𝑠2

2
−𝑥2 ≤ 0 − 𝑠2

3

84

2. Write the Lagrangian:

𝐿(𝑥1, 𝑥2, 𝜆1, 𝜆2, 𝜆3, 𝑠1, 𝑠2, 𝑠3) = −(𝑥2
1+2𝑥2

2)−𝜆1(𝑥1+𝑥2+𝑠2
1−4)−𝜆2(−𝑥1+𝑠2

2)−𝜆3(−𝑥2+𝑠2
3)

3. Take the partial derivatives and set equal to zero:
𝜕𝐿
𝜕𝑥1

= −2𝑥1 −𝜆1 +𝜆2 = 0\ 𝜕𝐿
𝜕𝑥2

= −4𝑥2 −𝜆1 +𝜆3 = 0\ 𝜕𝐿
𝜕𝜆1

= −(𝑥1 +𝑥2 +𝑠2
1 −4) = 0\

𝜕𝐿
𝜕𝜆2

= −(−𝑥1+𝑠2
2) = 0\ 𝜕𝐿

𝜕𝜆3
= −(−𝑥2+𝑠2

3) = 0\ 𝜕𝐿
𝜕𝑠1

= 2𝑠1𝜆1 = 0\ 𝜕𝐿
𝜕𝑠2

= 2𝑠2𝜆2 = 0\
𝜕𝐿
𝜕𝑠3

= 2𝑠3𝜆3 = 0

3. Consider all ways that the complementary slackness conditions are solved:

Hypothesis 𝑠1 𝑠2 𝑠3 𝜆1 𝜆2 𝜆3 𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
𝑠1 = 𝑠2 = 𝑠3 = 0 No solution
𝑠1 ≠ 0, 𝑠2 = 𝑠3 = 0 2 0 0 0 0 0 0 0 0
𝑠2 ≠ 0, 𝑠1 = 𝑠3 = 0 0 2 0 -8 0 -8 4 0 -16
𝑠3 ≠ 0, 𝑠1 = 𝑠2 = 0 0 0 2 -16 -16 0 0 4 -32
𝑠1 ≠ 0, 𝑠2 ≠ 0, 𝑠3 = 0 No solution
𝑠1 ≠ 0, 𝑠3 ≠ 0, 𝑠2 = 0 No solution
𝑠2 ≠ 0, 𝑠3 ≠ 0, 𝑠1 = 0 0 √8

3 √4
3 −16

3 0 0 8
3

4
3 −32

3
𝑠1 ≠ 0, 𝑠2 ≠ 0, 𝑠3 ≠ 0 No solution

This shows that there are four critical points: (0, 0), (4, 0), (0, 4), and (8
3 , 4

3)

4. Find maximum: Looking at the values of 𝑓(𝑥1, 𝑥2) at the critical points, we
see that the constrained maximum is located at (𝑥1, 𝑥2) = (0, 0), which is
the same as the unconstrained max. The constrained minimum is located at
(𝑥1, 𝑥2) = (0, 4), while there is no unconstrained minimum for this problem.

4.7 Kuhn-Tucker Conditions

As you can see, this can be a pain. When dealing explicitly with non-negativity
constraints, this process is simplified by using the Kuhn-Tucker method.

Because the problem of maximizing a function subject to inequality and non-
negativity constraints arises frequently in economics, the Kuhn-Tucker condi-
tions provides a method that often makes it easier to both calculate the critical
points and identify points that are (local) maxima.

85

Given a two-dimensional set-up:

max
𝑥1,𝑥2

/ min
𝑥1,𝑥2

𝑓(𝑥1, 𝑥2) s.t.
𝑐(𝑥1, 𝑥2) ≤ 𝑎1
𝑥1 ≥ 0
𝑔𝑥2 ≥ 0

We define the Lagrangian function 𝐿(𝑥1, 𝑥2, 𝜆1) the same as if we did not have the
non-negativity constraints:

𝐿(𝑥1, 𝑥2, 𝜆2) = 𝑓(𝑥1, 𝑥2) − 𝜆1(𝑐(𝑥1, 𝑥2) − 𝑎1)

More generally, in n dimensions:

𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘) = 𝑓(𝑥1, … , 𝑥𝑛) −
𝑘

∑
𝑖=1

𝜆𝑖(𝑐𝑖(𝑥1, … , 𝑥𝑛) − 𝑎𝑖)

Kuhn-Tucker and Complementary Slackness Conditions: To find the critical
points, we first calculate the Kuhn-Tucker conditions by taking the partial deriva-
tives of the lagrangian function, 𝐿(𝑥1, … , 𝑥𝑛, 𝜆1, … , 𝜆𝑘), with respect to each of its
variables (all choice variable s𝑥 and all lagrangian multipliers 𝜆) and we calculate
the complementary slackness conditions by multiplying each partial derivative by
its respective variable and include non-negativity conditions for all variables (choice
variables 𝑥 and lagrangian multipliers 𝜆).
Kuhn-Tucker Conditions

𝜕𝐿
𝜕𝑥1

≤ 0, … , 𝜕𝐿
𝜕𝑥𝑛

≤ 0

𝜕𝐿
𝜕𝜆1

≥ 0, … , 𝜕𝐿
𝜕𝜆𝑚

≥ 0

Complementary Slackness Conditions

𝑥1
𝜕𝐿
𝜕𝑥1

= 0, … , 𝑥𝑛
𝜕𝐿
𝜕𝑥𝑛

= 0

𝜆1
𝜕𝐿
𝜕𝜆1

= 0, … , 𝜆𝑚
𝜕𝐿

𝜕𝜆𝑚
= 0

Non-negativity Conditions

𝑥1 ≥ 0 … 𝑥𝑛 ≥ 0
𝜆1 ≥ 0 … 𝜆𝑚 ≥ 0

86

Note that some of these conditions are set equal to 0, while others are set as inequal-
ities!

Note also that to minimize the function 𝑓(𝑥1, … , 𝑥𝑛), the simplest thing to do is
maximize the function −𝑓(𝑥1, … , 𝑥𝑛); all of the conditions remain the same after
reformulating as a maximization problem.

There are additional assumptions (notably, f(x) is quasi-concave and the constraints
are convex) that are sufficient to ensure that a point satisfying the Kuhn-Tucker
conditions is a global max; if these assumptions do not hold, you may have to check
more than one point.

Finding the Critical Points with Kuhn-Tucker Conditions: Given the above
conditions, to find the critical points we solve the above system of equations. To do
so, we must check all border and interior solutions to see if they satisfy the above
conditions.

In a two-dimensional set-up, this means we must check the following cases:

1. 𝑥1 = 0, 𝑥2 = 0 Border Solution
2. 𝑥1 = 0, 𝑥2 ≠ 0 Border Solution
3. 𝑥1 ≠ 0, 𝑥2 = 0 Border Solution
4. 𝑥1 ≠ 0, 𝑥2 ≠ 0 Interior Solution

Example 4.5 (Kuhn-Tucker with two variables). Solve the following optimization
problem with inequality constraints

max
𝑥1,𝑥2

𝑓(𝑥) = −(𝑥2
1 + 2𝑥2

2)

s.t.
⎧{
⎨{⎩

𝑥1 + 𝑥2∗ ≤ 4
𝑥1∗ ≥ 0
𝑥2∗ ≥ 0

1. Write the Lagrangian:

𝐿(𝑥1, 𝑥2, 𝜆) = −(𝑥2
1 + 2𝑥2

2) − 𝜆(𝑥1 + 𝑥2 − 4)

2. Find the First Order Conditions:

87

Kuhn-Tucker Conditions

𝜕𝐿
𝜕𝑥1

= −2𝑥1 − 𝜆 ≤ 0
𝜕𝐿
𝜕𝑥2

= −4𝑥2 − 𝜆 ≤ 0
𝜕𝐿
𝜕𝜆 = −(𝑥1 + 𝑥2 − 4) ≥ 0

Complementary Slackness Conditions

𝑥1
𝜕𝐿
𝜕𝑥2

= 𝑥1(−2𝑥1 − 𝜆) = 0

𝑥2
𝜕𝐿
𝜕𝑥2

= 𝑥2(−4𝑥2 − 𝜆) = 0

𝜆𝜕𝐿
𝜕𝜆 = −𝜆(𝑥1 + 𝑥2 − 4) = 0

Non-negativity Conditions

𝑥1 ≥ 0
𝑥2 ≥ 0
𝜆 ≥ 0

3. Consider all border and interior cases:

Hypothesis 𝜆 𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
𝑥1 = 0, 𝑥2 = 0 0 0 0 0
𝑥1 = 0, 𝑥2 ≠ 0 -16 0 4 -32
𝑥1 ≠ 0, 𝑥2 = 0 -8 4 0 -16
𝑥1 ≠ 0, 𝑥2 ≠ 0 −16

3
8
3

4
3 −32

3

4. Find Maximum: Three of the critical points violate the requirement that 𝜆 ≥ 0,
so the point (0, 0, 0) is the maximum.

Exercise 4.4 (Kuhn-Tucker with logs). Solve the constrained optimization prob-
lem,

max
𝑥1,𝑥2

𝑓(𝑥) = 1
3 log(𝑥1 + 1) + 2

3 log(𝑥2 + 1) s.t.
𝑥1 + 2𝑥2 ≤ 4
𝑥1 ≥ 0
𝑥2 ≥ 0

88

1. Write the Lagrangian:

𝐿(𝑥1, 𝑥2, 𝜆) = 1
3 log(𝑥1 + 1) + 2

3 log(𝑥2 + 1) − 𝜆(𝑥1 + 2𝑥2 − 4)

2. Find the First Order Conditions:

Kuhn-Tucker Conditions
𝜕𝐿
𝜕𝑥1

= 1
3(𝑥1+1) − 𝜆 ≤ 0\ 𝜕𝐿

𝜕𝑥2
= 2

3(𝑥2+1) − 𝜆 ≤ 0\ 𝜕𝐿
𝜕𝜆 = −(𝑥1 + 2𝑥2 − 4) ≥ 0\

Complementary Slackness Conditions

𝑥1
𝜕𝐿
𝜕𝑥2

= 𝑥1(1
3(𝑥1+1) −𝜆) = 0\ 𝑥2

𝜕𝐿
𝜕𝑥2

= 𝑥2(2
3(𝑥2+1) −𝜆) = 0\ 𝜆𝜕𝐿

𝜕𝜆 = −𝜆(𝑥1+2𝑥2−4) =
0\
Non-negativity Conditions

𝑥1 ≥ 0\ 𝑥2 ≥ 0\ $�\geq $0\

3. Consider all border and interior cases:

Hypothesis 𝜆 𝑥1 𝑥2 𝑓(𝑥1, 𝑥2)
𝑥1 = 0, 𝑥2 = 0 No Solution
𝑥1 = 0, 𝑥2 ≠ 0 No Solution
𝑥1 ≠ 0, 𝑥2 = 0 No Solution
𝑥1 ≠ 0, 𝑥2 ≠ 0 4

3
4
3 log 7

3

4. Find Maximum:

Three of the critical points violate the constraints, so the point (4
3 , 4

3) is the maxi-
mum.\

4.8 Applications of Quadratic Forms

Curvature and The Taylor Polynomial as a Quadratic Form: The Hessian is
used in a Taylor polynomial approximation to 𝑓(x) and provides information about
the curvature of 𝑓(x) at x — e.g., which tells us whether a critical point x∗ is a min,
max, or saddle point.

1. The second order Taylor polynomial about the critical point x∗ is

𝑓(x∗ + h) = f(x∗) + �f(x∗)h + 1
2h⊤H(x∗)h + R(h)

89

2. Since we’re looking at a critical point, ∇𝑓(x∗) = 0; and for small h, 𝑅(h) is
negligible. Rearranging, we get

𝑓(x∗ + h) − f(x∗) ≈ 1
2h⊤H(x∗)h

3. The Righthand side here is a quadratic form and we can determine the defi-
niteness of H(x∗).

90

5 Probability Theory

Probability and Inferences are mirror images of each other, and both are integral to
social science. Probability quantifies uncertainty, which is important because many
things in the social world are at first uncertain. Inference is then the study of how
to learn about facts you don’t observe from facts you do observe.

5.1 Counting rules

Probability in high school is usually really about combinatorics: the probability of
event A is the number of ways in which A can occur divided by the number of all
other possibilities. This is a very simplified version of probability, which we can call
the “counting definition of probability”, essentially because each possible event to
count is often equally likely and discrete. But it is still good to review the underlying
rules here.

Fundamental Theorem of Counting: If an object has 𝑗 different characteristics
that are independent of each other, and each characteristic 𝑖 has 𝑛𝑖 ways of being
expressed, then there are ∏𝑗

𝑖=1 𝑛𝑖 possible unique objects.

Example 5.1 (Counting Possibilities). Suppose we are given a stack of cards. Cards
can be either red or black and can take on any of 13 values. There is only one of
each color-number combination. In this case,

1. 𝑗 =
2. 𝑛color =
3. 𝑛number =
4. Number of Outcomes =

We often need to count the number of ways to choose a subset from some set of
possibilities. The number of outcomes depends on two characteristics of the process:
does the order matter and is replacement allowed?

91

It is useful to think of any problem concretely, e.g. through a sampling table: If
there are 𝑛 objects which are numbered 1 to 𝑛 and we select 𝑘 < 𝑛 of them, how
many different outcomes are possible?

If the order in which a given object is selected matters, selecting 4 numbered objects
in the following order (1, 3, 7, 2) and selecting the same four objects but in a different
order such as (7, 2, 1, 3) will be counted as different outcomes.

If replacement is allowed, there are always the same 𝑛 objects to select from. How-
ever, if replacement is not allowed, there is always one less option than the previous
round when making a selection. For example, if replacement is not allowed and I am
selecting 3 elements from the following set {1, 2, 3, 4, 5, 6}, I will have 6 options at
first, 5 options as I make my second selection, and 4 options as I make my third.

1. So if order matters AND we are sampling with replacement, the number
of different outcomes is 𝑛𝑘.

2. If order matters AND we are sampling without replacement, the number
of different outcomes is 𝑛(𝑛 − 1)(𝑛 − 2)...(𝑛 − 𝑘 + 1) = 𝑛!

(𝑛−𝑘)! .

3. If order doesn’t matter AND we are sampling without replacement, the
number of different outcomes is (𝑛

𝑘) = 𝑛!
(𝑛−𝑘)!𝑘! .

Expression (𝑛
𝑘) is read as “n choose k” and denotes 𝑛!

(𝑛−𝑘)!𝑘! . Also, note that 0! = 1.

Example 5.2 (Counting). There are five balls numbered from 1 through 5 in a jar.
Three balls are chosen. How many possible choices are there?

1. Ordered, with replacement =
2. Ordered, without replacement =
3. Unordered, without replacement =

Exercise 5.1 (Counting). Four cards are selected from a deck of 52 cards. Once a
card has been drawn, it is not reshuffled back into the deck. Moreover, we care only
about the complete hand that we get (i.e. we care about the set of selected cards,
not the sequence in which it was drawn). How many possible outcomes are there?

92

5.2 Sets

Probability is about quantifying the uncertainty of events. Sets (set theory) are the
mathematical way we choose to formalize those events. Events are not inherently
numerical: the onset of war or the stock market crashing is not inherently a number.
Sets can define such events, and we wrap math around so that we have a trans-
parent language to communicate about those events. Measure theory might sound
mysterious or hard, but it is also just a mathematical way to quantify things like
length, volume, and mass. Probability can be thought of as a particular application
of measure theory where we want to quantify the measure of a set.

Set : A set is any well defined collection of elements. If 𝑥 is an element of 𝑆,
𝑥 ∈ 𝑆.
Sample Space (S): A set or collection of all possible outcomes from some pro-
cess. Outcomes in the set can be discrete elements (countable) or points along a
continuous interval (uncountable).

Examples:

1. Discrete: the numbers on a die, whether a vote cast is republican or democrat.
2. Continuous: GNP, arms spending, age.

Event: Any collection of possible outcomes of an experiment. Any subset of the
full set of possibilities, including the full set itself. Event A ⊂ S.

Empty Set: a set with no elements. 𝑆 = {}. It is denoted by the symbol ∅.
Set operations:

1. Union: The union of two sets 𝐴 and 𝐵, 𝐴 ∪ 𝐵, is the set containing all of the
elements in 𝐴 or 𝐵.

𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 =
𝑛

⋃
𝑖=1

𝐴𝑖

2. Intersection: The intersection of sets 𝐴 and 𝐵, 𝐴 ∩ 𝐵, is the set containing
all of the elements in both 𝐴 and 𝐵.

𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛 =
𝑛

⋂
𝑖=1

𝐴𝑖

3. Complement: If set 𝐴 is a subset of 𝑆, then the complement of 𝐴, denoted
𝐴𝐶, is the set containing all of the elements in 𝑆 that are not in 𝐴.

Properties of set operations:

• Commutative: 𝐴 ∪ 𝐵 = 𝐵 ∪ 𝐴; 𝐴 ∩ 𝐵 = 𝐵 ∩ 𝐴

93

• Associative: 𝐴 ∪ (𝐵 ∪ 𝐶) = (𝐴 ∪ 𝐵) ∪ 𝐶; 𝐴 ∩ (𝐵 ∩ 𝐶) = (𝐴 ∩ 𝐵) ∩ 𝐶
• Distributive: 𝐴∩(𝐵∪𝐶) = (𝐴∩𝐵)∪(𝐴∩𝐶); 𝐴∪(𝐵∩𝐶) = (𝐴∪𝐵)∩(𝐴∪𝐶)
• de Morgan’s laws: (𝐴 ∪ 𝐵)𝐶 = 𝐴𝐶 ∩ 𝐵𝐶; (𝐴 ∩ 𝐵)𝐶 = 𝐴𝐶 ∪ 𝐵𝐶

• Disjointness: Sets are disjoint when they do not intersect, such that 𝐴∩𝐵 =
∅. A collection of sets is pairwise disjoint (mutually exclusive) if, for all
𝑖 ≠ 𝑗, 𝐴𝑖 ∩ 𝐴𝑗 = ∅. A collection of sets form a partition of set 𝑆 if they are
pairwise disjoint and they cover set 𝑆, such that ⋃𝑘

𝑖=1 𝐴𝑖 = 𝑆.

Example 5.3 (Sets). Let set 𝐴 be {1, 2, 3, 4}, 𝐵 be {3, 4, 5, 6}, and 𝐶 be {5, 6,
7, 8}. Sets 𝐴, 𝐵, and 𝐶 are all subsets of the sample space 𝑆 which is {1, 2, 3, 4, 5,
6, 7, 8, 9, 10}

Write out the following sets:

1. 𝐴 ∪ 𝐵
2. 𝐶 ∩ 𝐵
3. 𝐵𝑐

4. 𝐴 ∩ (𝐵 ∪ 𝐶)

Exercise 5.2 (Sets). Suppose you had a pair of four-sided dice. You sum the results
from a single toss.

What is the set of possible outcomes (i.e. the sample space)?

Consider subsets A {2, 8} and B {2,3,7} of the sample space you found. What is

1. 𝐴𝑐

2. (𝐴 ∪ 𝐵)𝑐

5.3 Probability

Probability Definitions: Formal and Informal

Many things in the world are uncertain. In everyday speech, we say that we are
uncertain about the outcome of random events. Probability is a formal model of
uncertainty which provides a measure of uncertainty governed by a particular set of
rules (Figure Figure 5.1). A different model of uncertainty would, of course, have
a set of rules different from anything we discuss here. Our focus on probability is
justified because it has proven to be a particularly useful model of uncertainty.

1Images of Probability and Random Variables drawn by Shiro Kuriwaki and inspired by Blitzstein
and Morris

94

Sample Space: S

s1
s2

s8

s3
s4

s5

s6

s7

An "experiment" from the
(unobserved) data generating process

generates (observed) outcomes.
Events are sets of outcomes.

Event A

Figure 5.1: Probablity as a Measure1

Probability Distribution Function: a mapping of each event in the sample
space 𝑆 to the real numbers that satisfy the following three axioms (also called
Kolmogorov’s Axioms).

Formally,

Definition 5.1 (Probability). Probability is a function that maps events to a real
number, obeying the axioms of probability.

The axioms of probability make sure that the separate events add up in terms of
probability, and – for standardization purposes – that they add up to 1.

Definition 5.2 (Axioms of Probability).

1. For any event 𝐴, 𝑃(𝐴) ≥ 0.
2. 𝑃(𝑆) = 1
3. The Countable Additivity Axiom: For any sequence of disjoint (mutually ex-

clusive) events 𝐴1, 𝐴2, … (of which there may be infinitely many),

𝑃 (
𝑘

⋃
𝑖=1

𝐴𝑖) =
𝑘

∑
𝑖=1

𝑃(𝐴𝑖)

The last axiom is an extension of a union to infinite sets. When there are only two
events in the space, it boils down to:

𝑃(𝐴1 ∪ 𝐴2) = 𝑃(𝐴1) + 𝑃(𝐴2) for disjoint 𝐴1, 𝐴2

95

Probability Operations

Using these three axioms, we can define all of the common rules of probability.

1. 𝑃(∅) = 0
2. For any event 𝐴, 0 ≤ 𝑃(𝐴) ≤ 1.
3. 𝑃(𝐴𝐶) = 1 − 𝑃(𝐴)
4. If 𝐴 ⊂ 𝐵 (𝐴 is a subset of 𝐵), then 𝑃(𝐴) ≤ 𝑃(𝐵).
5. For any two events 𝐴 and 𝐵, 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) − 𝑃(𝐴 ∩ 𝐵)
6. Boole’s Inequality: For any sequence of 𝑛 events (which need not be disjoint)

𝐴1, 𝐴2, … , 𝐴𝑛, then 𝑃 (
𝑛
⋃

𝑖=1
𝐴𝑖) ≤

𝑛
∑
𝑖=1

𝑃(𝐴𝑖).

Example 5.4 (Probability). Assume we have an evenly-balanced, six-sided die.

Then,

1. Sample space S =
2. 𝑃(1) = ⋯ = 𝑃(6) =
3. 𝑃(∅) = 𝑃(7) =
4. 𝑃 ({1, 3, 5}) =
5. 𝑃 ({1, 2}𝐶) = 𝑃 ({3, 4, 5, 6}) =
6. Let 𝐴 = {1, 2, 3, 4, 5} ⊂ 𝑆. Then 𝑃(𝐴) = 5/6 < 𝑃(𝑆) =
7. Let 𝐴 = {1, 2, 3} and 𝐵 = {2, 4, 6}. Then 𝐴 ∪ 𝐵? 𝐴 ∩ 𝐵? 𝑃(𝐴 ∪ 𝐵)?

Exercise 5.3 (Probability). Suppose you had a pair of four-sided dice. You sum
the results from a single toss. Let us call this sum, or the outcome, X.

1. What is 𝑃(𝑋 = 5), 𝑃(𝑋 = 3), 𝑃(𝑋 = 6)?
2. What is 𝑃(𝑋 = 5 ∪ 𝑋 = 3)𝐶?

5.4 Conditional Probability and Bayes Rule

Conditional Probability: The conditional probability 𝑃(𝐴|𝐵) of an event 𝐴 is the
probability of 𝐴, given that another event 𝐵 has occurred. Conditional probability
allows for the inclusion of other information into the calculation of the probability
of an event. It is calculated as

𝑃(𝐴|𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵)

96

Note that conditional probabilities are probabilities and must also follow the Kol-
magorov axioms of probability.

Example 5.5 (Conditional Probability 1). Assume 𝐴 and 𝐵 occur with the follow-
ing frequencies:

𝐴 𝐴𝑐

𝐵 𝑛𝑎𝑏 𝑛𝑎𝑐𝑏
𝐵𝐶 𝑛𝑎𝑏𝑐 𝑛(𝑎𝑏)𝑐

and let 𝑛𝑎𝑏 + 𝑛𝑎𝐶𝑏 + 𝑛𝑎𝑏𝐶 + 𝑛(𝑎𝑏)𝐶 = 𝑁 . Then

1. 𝑃(𝐴) =
2. 𝑃(𝐵) =
3. 𝑃(𝐴 ∩ 𝐵) =
4. 𝑃(𝐴|𝐵) = 𝑃(𝐴∩𝐵)

𝑃(𝐵) =
5. 𝑃(𝐵|𝐴) = 𝑃(𝐴∩𝐵)

𝑃(𝐴) =

Example 5.6 (Conditional Probability 2). A six-sided die is rolled. What is the
probability of a 1, given the outcome is an odd number?

You could rearrange the fraction to highlight how a joint probability could be ex-
pressed as the product of a conditional probability.

Definition 5.3 (Multiplicative Law of Probability). The probability of the inter-
section of two events 𝐴 and 𝐵 is 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵|𝐴) = 𝑃(𝐵)𝑃(𝐴|𝐵) which
follows directly from the definition of conditional probability. More generally,

𝑃(𝐴1∩⋯∩𝐴𝑘) = 𝑃 (𝐴𝑘|𝐴𝑘−1∩⋯∩𝐴1)×𝑃(𝐴𝑘−1|𝐴𝑘−2∩⋯ 𝐴1)×…×𝑃(𝐴2|𝐴1)×𝑃(𝐴1)

Sometimes it is easier to calculate these conditional probabilities and sum them than
it is to calculate 𝑃(𝐴) directly.

Definition 5.4 (Law of Total Probability). Let 𝑆 be the sample space of some
experiment and let the disjoint 𝑘 events 𝐵1, … , 𝐵𝑘 partition 𝑆, such that 𝑃(𝐵1 ∪

97

... ∪ 𝐵𝑘) = 𝑃(𝑆) = 1. If 𝐴 is some other event in 𝑆, then the events 𝐴 ∩ 𝐵1, 𝐴 ∩
𝐵2, … , 𝐴 ∩ 𝐵𝑘 will form a partition of 𝐴 and we can write 𝐴 as

𝐴 = (𝐴 ∩ 𝐵1) ∪ ⋯ ∪ (𝐴 ∩ 𝐵𝑘)

.

Since the 𝑘 events are disjoint,

𝑃(𝐴) =
𝑘

∑
𝑖=1

𝑃(𝐴 ∩ 𝐵𝑖)

=
𝑘

∑
𝑖=1

𝑃(𝐵𝑖)𝑃 (𝐴|𝐵𝑖)

Bayes Rule: Assume that events 𝐵1, … , 𝐵𝑘 form a partition of the space 𝑆. Then
by the Law of Total Probability

𝑃(𝐵𝑗|𝐴) = 𝑃(𝐴 ∩ 𝐵𝑗)
𝑃 (𝐴) = 𝑃(𝐵𝑗)𝑃 (𝐴|𝐵𝑗)

𝑘
∑
𝑖=1

𝑃(𝐵𝑖)𝑃 (𝐴|𝐵𝑖)

If there are only two states of 𝐵, then this is just

𝑃(𝐵1|𝐴) = 𝑃(𝐵1)𝑃 (𝐴|𝐵1)
𝑃 (𝐵1)𝑃 (𝐴|𝐵1) + 𝑃(𝐵2)𝑃 (𝐴|𝐵2)

Bayes’ rule determines the posterior probability of a state 𝑃(𝐵𝑗|𝐴) by calculat-
ing the probability 𝑃(𝐴 ∩ 𝐵𝑗) that both the event 𝐴 and the state 𝐵𝑗 will occur
and dividing it by the probability that the event will occur regardless of the state
(by summing across all 𝐵𝑖). The states could be something like Normal/Defective,
Healthy/Diseased, Republican/Democrat/Independent, etc. The event on which
one conditions could be something like a sampling from a batch of components, a
test for a disease, or a question about a policy position.

Prior and Posterior Probabilities: Above, 𝑃(𝐵1) is often called the prior prob-
ability, since it’s the probability of 𝐵1 before anything else is known. 𝑃(𝐵1|𝐴) is
called the posterior probability, since it’s the probability after other information is
taken into account.

98

Example 5.7 (Bayes’ Rule). In a given town, 40% of the voters are Democrat and
60% are Republican. The president’s budget is supported by 50% of the Democrats
and 90% of the Republicans. If a randomly (equally likely) selected voter is found to
support the president’s budget, what is the probability that they are a Democrat?

Exercise 5.4 (Conditional Probability). Assume that 2% of the population of the
U.S. are members of some extremist militia group. We develop a survey that posi-
tively classifies someone as being a member of a militia group given that they are a
member 95% of the time and negatively classifies someone as not being a member
of a militia group given that they are not a member 97% of the time. What is the
probability that someone positively classified as being a member of a militia group
is actually a militia member?

5.5 Independence

Definition 5.5 (Independence). If the occurrence or nonoccurrence of either events
𝐴 and 𝐵 have no effect on the occurrence or nonoccurrence of the other, then 𝐴
and 𝐵 are independent.

If 𝐴 and 𝐵 are independent, then

1. 𝑃(𝐴|𝐵) = 𝑃 (𝐴)
2. 𝑃(𝐵|𝐴) = 𝑃 (𝐵)
3. 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐴)𝑃(𝐵)
4. More generally than the above, 𝑃(⋂𝑘

𝑖=1 𝐴𝑖) = ∏𝐾
𝑖=1 𝑃(𝐴𝑖)

Are mutually exclusive events independent of each other?

No. If A and B are mutually exclusive, then they cannot happen simultaneously. If
we know that A occurred, then we know that B couldn’t have occurred. Because of
this, A and B aren’t independent.

Pairwise Independence: A set of more than two events 𝐴1, 𝐴2, … , 𝐴𝑘 is pairwise
independent if 𝑃(𝐴𝑖∩𝐴𝑗) = 𝑃(𝐴𝑖)𝑃 (𝐴𝑗), ∀𝑖 ≠ 𝑗. Note that this does not necessarily
imply joint independence.

Conditional Independence: If 𝐴 and 𝐵 are independent once you know the oc-
currence of a third event 𝐶, then 𝐴 and 𝐵 are conditionally independent (conditional
on 𝐶):

1. 𝑃(𝐴|𝐵 ∩ 𝐶) = 𝑃(𝐴|𝐶)
2. 𝑃(𝐵|𝐴 ∩ 𝐶) = 𝑃(𝐵|𝐶)

99

3. 𝑃(𝐴 ∩ 𝐵|𝐶) = 𝑃(𝐴|𝐶)𝑃(𝐵|𝐶)

Just because two events are conditionally independent does not mean that they are
independent. Actually it is hard to think of real-world things that are “uncondition-
ally” independent. That’s why it’s always important to ask about a finding: What
was it conditioned on? For example, suppose that a graduate school admission de-
cisions are done by only one professor, who picks a group of 50 bright students and
flips a coin for each student to generate a class of about 25 students. Then the the
probability that two students get accepted are conditionally independent, because
they are determined by two separate coin tosses. However, this does not mean that
their admittance is not completely independent. Knowing that student 𝐴 got in
gives us information about whether student 𝐵 got in, if we think that the professor
originally picked her pool of 50 students by merit.

Perhaps more counter-intuitively: If two events are already independent, then it
might seem that no amount of “conditioning” will make them dependent. But this
is not always so. For example2, suppose I only get a call from two people, Alice and
Bob. Let 𝐴 be the event that Alice calls, and 𝐵 be the event that Bob calls. Alice
and Bob do not communicate, so 𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴). But now let 𝐶 be the event
that your phone rings. For conditional independence to hold here, then 𝑃(𝐴 ∣ 𝐶)
must be equal to 𝑃(𝐴 ∣ 𝐵 ∩ 𝐶). But this is not true – 𝐴 ∣ 𝐶 may or may not be true,
but 𝑃(𝐴 ∣ 𝐵 ∩ 𝐶) certainly is true.

5.6 Random Variables

Most questions in the social sciences involve events, rather than numbers per se. To
analyze and reason about events quantitatively, we need a way of mapping events
to numbers. A random variable does exactly that.

Definition 5.6 (Random Variable). A random variable is a measurable function 𝑋
that maps from the sample space 𝑆 to the set of real numbers 𝑅. It assigns a real
number to every outcome 𝑠 ∈ 𝑆.

Figure Figure 5.2 shows a image of the function. It might seem strange to define a
random variable as a function – which is neither random nor variable. The random-
ness comes from the realization of an event from the sample space 𝑠.
Randomness means that the outcome of some experiment is not deterministic,
i.e. there is some probability (0 < 𝑃(𝐴) < 1) that the event will occur.

2Example taken from Blitzstein and Hwang, Example 2.5.10

100

s1
s2

s8

s3
s4

s5

s6

s7

(Real) Number LineSpace of Events

-1.2 -0.6 0 1 2

The Random Variable X is a function
that takes events and assigns a
number to them. That mapping
process is deterministic, but the

occurrence of an event is still random.

X

Figure 5.2: The Random Variable as a Real-Valued Function

The support of a random variable is all values for which there is a positive probability
of occurrence.

Example: Flip a fair coin two times. What is the sample space?

A random variable must map events to the real line. For example, let a random
variable 𝑋 be the number of heads. The event (𝐻, 𝐻) gets mapped to 2 𝑋(𝑠) = 2,
and the events {(𝐻, 𝑇), (𝑇 , 𝐻)} gets mapped to 1 (𝑋(𝑠) = 1), the event (𝑇 , 𝑇) gets
mapped to 0 (𝑋(𝑠) = 0).
What are other possible random variables?

5.7 Distributions

We now have two main concepts in this section – probability and random variables.
Given a sample space 𝑆 and the same experiment, both probability and random
variables take events as their inputs. But they output different things (probabilities
measure the “size” of events, random variables give a number in a way that the
analyst chose to define the random variable). How do the two concepts relate?

The concept of distributions is the natural bridge between these two concepts.

101

Definition 5.7 (Distribution of a random variable). A distribution of a random
variable is a function that specifies the probabilities of all events associated with
that random variable. There are several types of distributions: A probability mass
function for a discrete random variable and probability density function for a con-
tinuous random variable.

Notice how the definition of distributions combines two ideas of random variables
and probabilities of events. First, the distribution considers a random variable, call
it 𝑋. 𝑋 can take a number of possible numeric values.

Example 5.8 (Total Number of Occurrences). Consider three binary outcomes, one
for each patient recovering from a disease: 𝑅𝑖 denotes the event in which patient 𝑖
(𝑖 = 1, 2, 3) recovers from a disease. 𝑅1, 𝑅2, and 𝑅3. How would we represent the
total number of people who end up recovering from the disease?

Solution 5.1. Define the random variable 𝑋 be the total number of people (out of
three) who recover from the disease. Random variables are functions, that take as
an input a set of events (in the sample space 𝑆) and deterministically assigns them
to a number of the analyst’s choice.

Recall that with each of these numerical values there is a class of events. In the
previous example, for 𝑋 = 3 there is one outcome (𝑅1, 𝑅2, 𝑅3) and for 𝑋 = 1 there
are multiple ({(𝑅1, 𝑅𝑐

2, 𝑅𝑐
3), (𝑅𝑐

1, 𝑅2, 𝑅𝑐
3), (𝑅𝑐

1, 𝑅𝑐
2, 𝑅3), }). Now, the thing to notice

here is that each of these events naturally come with a probability associated with
them. That is, 𝑃 (𝑅1, 𝑅2, 𝑅3) is a number from 0 to 1, as is 𝑃(𝑅1, 𝑅𝑐

2, 𝑅𝑐
3). These

all have probabilities because they are in the sample space 𝑆. The function that
tells us these probabilities that are associated with a numerical value of a random
variable is called a distribution.

In other words, a random variable 𝑋 induces a probability distribution 𝑃 (sometimes
written 𝑃𝑋 to emphasize that the probability density is about the r.v. 𝑋)

Discrete Random Variables

The formal definition of a random variable is easier to given by separating out two
cases: discrete random variables when the numeric summaries of the events are
discrete, and continuous random variables when they are continuous.

Definition 5.8 (Discrete Random Variable). 𝑋 is a discrete random variable if it
can assume only a finite or countably infinite number of distinct values. Examples:
number of wars per year, heads or tails.

102

The distribution of a discrete r.v. is a PMF:

Definition 5.9 (Probability Mass Function). For a discrete random variable 𝑋, the
probability mass function (Also referred to simply as the “probability distribution.”)
(PMF), 𝑝(𝑥) = 𝑃(𝑋 = 𝑥), assigns probabilities to a countable number of distinct 𝑥
values such that

1. 0 ≤ 𝑝(𝑥) ≤ 1
2. ∑

𝑦
𝑝(𝑥) = 1

Example: For a fair six-sided die, there is an equal probability of rolling any number.
Since there are six sides, the probability mass function is then 𝑝(𝑦) = 1/6 for
𝑦 = 1, … , 6, 0 otherwise.}

In a discrete random variable, cumulative density function (Also referred to
simply as the “cumulative distribution” or previously as the “density function”),
𝐹(𝑥) or 𝑃(𝑋 ≤ 𝑥), is the probability that 𝑋 is less than or equal to some value 𝑥,
or

𝑃(𝑋 ≤ 𝑥) = ∑
𝑖≤𝑥

𝑝(𝑖)

Properties a CDF must satisfy:

1. 𝐹(𝑥) is non-decreasing in 𝑥.
2. lim

𝑥→−∞
𝐹(𝑥) = 0 and lim

𝑥→∞
𝐹(𝑥) = 1

3. 𝐹(𝑥) is right-continuous.

Note that 𝑃 (𝑋 > 𝑥) = 1 − 𝑃(𝑋 ≤ 𝑥).

Example 5.9. For a fair die with its value as 𝑌 , What are the following?

1. 𝑃(𝑌 ≤ 1)
2. 𝑃(𝑌 ≤ 3)
3. 𝑃(𝑌 ≤ 6)

Continuous Random Variables

We also have a similar definition for continuous random variables.

103

Definition 5.10 (Continuous Random Variable). 𝑋 is a continuous random variable
if there exists a nonnegative function 𝑓(𝑥) defined for all real 𝑥 ∈ (−∞, ∞), such
that for any interval 𝐴, 𝑃(𝑋 ∈ 𝐴) = ∫

𝐴
𝑓(𝑥)𝑑𝑥. Examples: age, income, GNP,

temperature.

Definition 5.11 (Probability Density Function). The function 𝑓 above is called
the probability density function (pdf) of 𝑋 and must satisfy

𝑓(𝑥) ≥ 0
∞

∫
−∞

𝑓(𝑥)𝑑𝑥 = 1

Note also that 𝑃(𝑋 = 𝑥) = 0 — i.e., the probability of any point 𝑦 is zero.

For both discrete and continuous random variables, we have a unifying concept of
another measure: the cumulative distribution:

Definition 5.12 (Cumulative Density Function). Because the probability that a
continuous random variable will assume any particular value is zero, we can only
make statements about the probability of a continuous random variable being within
an interval. The cumulative distribution gives the probability that 𝑌 lies on the
interval (−∞, 𝑦) and is defined as

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) =
𝑥

∫
−∞

𝑓(𝑠)𝑑𝑠

Note that 𝐹(𝑥) has similar properties with continuous distributions as it does with
discrete - non-decreasing, continuous (not just right-continuous), and lim

𝑥→−∞
𝐹(𝑥) =

0 and lim
𝑥→∞

𝐹(𝑥) = 1.

We can also make statements about the probability of 𝑌 falling in an interval 𝑎 ≤
𝑦 ≤ 𝑏.

𝑃(𝑎 ≤ 𝑥 ≤ 𝑏) =
𝑏

∫
𝑎

𝑓(𝑥)𝑑𝑥

The PDF and CDF are linked by the integral: The CDF of the integral of the
PDF:

𝑓(𝑥) = 𝐹 ′(𝑥) = 𝑑𝐹(𝑥)
𝑑𝑥

104

Example 5.10. For 𝑓(𝑦) = 1, 0 < 𝑦 < 1, find: (1) The CDF 𝐹(𝑦) and (2) The
probability 𝑃(0.5 < 𝑦 < 0.75).

5.8 Joint Distributions

Often, we are interested in two or more random variables defined on the same
sample space. The distribution of these variables is called a joint distribution. Joint
distributions can be made up of any combination of discrete and continuous random
variables.

Joint Probability Distribution: If both 𝑋 and 𝑌 are random variable, their joint
probability mass/density function assigns probabilities to each pair of outcomes

Discrete:

𝑝(𝑥, 𝑦) = 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)

such that 𝑝(𝑥, 𝑦) ∈ [0, 1] and

∑ ∑ 𝑝(𝑥, 𝑦) = 1

Continuous:

𝑓(𝑥, 𝑦); 𝑃 ((𝑋, 𝑌) ∈ 𝐴) = ∫∫
𝐴

𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

s.t. 𝑓(𝑥, 𝑦) ≥ 0 and

∫
∞

−∞
∫

∞

−∞
𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 1

If X and Y are independent, then 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦) = 𝑃(𝑋 = 𝑥)𝑃(𝑌 = 𝑦) and
𝑓(𝑥, 𝑦) = 𝑓(𝑥)𝑓(𝑦)
Marginal Probability Distribution: probability distribution of only one of the
two variables (ignoring information about the other variable), we can obtain the
marginal distribution by summing/integrating across the variable that we don’t
care about:

• Discrete: 𝑝𝑋(𝑥) = ∑𝑖 𝑝(𝑥, 𝑦𝑖)
• Continuous: 𝑓𝑋(𝑥) = ∫∞

−∞ 𝑓(𝑥, 𝑦)𝑑𝑦

105

Conditional Probability Distribution: probability distribution for one variable,
holding the other variable fixed. Recalling from the previous lecture that 𝑃(𝐴|𝐵) =
𝑃(𝐴∩𝐵)

𝑃(𝐵) , we can write the conditional distribution as

• Discrete: 𝑝𝑌 |𝑋(𝑦|𝑥) = 𝑝(𝑥,𝑦)
𝑝𝑋(𝑥) , 𝑝𝑋(𝑥) > 0

• Continuous: 𝑓𝑌 |𝑋(𝑦|𝑥) = 𝑓(𝑥,𝑦)
𝑓𝑋(𝑥) , 𝑓𝑋(𝑥) > 0

Exercise 5.5 (Discrete Outcomes). Suppose we are interested in the outcomes of
flipping a coin and rolling a 6-sided die at the same time. The sample space for this
process contains 12 elements:

{(𝐻, 1), (𝐻, 2), (𝐻, 3), (𝐻, 4), (𝐻, 5), (𝐻, 6), (𝑇 , 1), (𝑇 , 2), (𝑇 , 3), (𝑇 , 4), (𝑇 , 5), (𝑇 , 6)}

We can define two random variables 𝑋 and 𝑌 such that 𝑋 = 1 if heads and 𝑋 = 0
if tails, while 𝑌 equals the number on the die.

We can then make statements about the joint distribution of 𝑋 and 𝑌 . What are
the following?

1. 𝑃(𝑋 = 𝑥)
2. 𝑃(𝑌 = 𝑦)
3. 𝑃(𝑋 = 𝑥, 𝑌 = 𝑦)
4. 𝑃(𝑋 = 𝑥|𝑌 = 𝑦)
5. Are X and Y independent?

5.9 Expectation

We often want to summarize some characteristics of the distribution of a random
variable. The most important summary is the expectation (or expected value, or
mean), in which the possible values of a random variable are weighted by their
probabilities.

Definition 5.13 (Expectation of a Discrete Random Variable). The expected value
of a discrete random variable 𝑌 is

𝐸(𝑌) = ∑
𝑦

𝑦𝑃(𝑌 = 𝑦) = ∑
𝑦

𝑦𝑝(𝑦)

In words, it is the weighted average of all possible values of 𝑌 , weighted by the
probability that 𝑦 occurs. It is not necessarily the number we would expect 𝑌
to take on, but the average value of 𝑌 after a large number of repetitions of an
experiment.

106

Example 5.11 (Expectation of a Discrete Random Variable). What is the expec-
tation of a fair, six-sided die?

Expectation of a Continuous Random Variable: The expected value of a
continuous random variable is similar in concept to that of the discrete random
variable, except that instead of summing using probabilities as weights, we integrate
using the density to weight. Hence, the expected value of the continuous variable 𝑌
is defined by

𝐸(𝑌) = ∫
𝑦

𝑦𝑓(𝑦)𝑑𝑦

Example 5.12 (Expectation of a Continuous Random Variable). Find 𝐸(𝑌) for
𝑓(𝑦) = 1

1.5 , 0 < 𝑦 < 1.5.

Expected Value of a Function

Remember: An Expected Value is a type of weighted average. We can extend this
to composite functions. For random variable 𝑌 ,

If 𝑌 is Discrete with PMF 𝑝(𝑦),

𝐸[𝑔(𝑌)] = ∑
𝑦

𝑔(𝑦)𝑝(𝑦)

If 𝑌 is Continuous with PDF 𝑓(𝑦),

𝐸[𝑔(𝑌)] =
∞

∫
−∞

𝑔(𝑦)𝑓(𝑦)𝑑𝑦

Properties of Expected Values

Dealing with Expectations is easier when the thing inside is a sum. The intuition
behind this that Expectation is an integral, which is a type of sum.

1. Expectation of a constant is a constant

𝐸(𝑐) = 𝑐

2. Constants come out
𝐸(𝑐𝑔(𝑌)) = 𝑐𝐸(𝑔(𝑌))

107

3. Expectation is Linear

𝐸(𝑔(𝑌1) + ⋯ + 𝑔(𝑌𝑛)) = 𝐸(𝑔(𝑌1)) + ⋯ + 𝐸(𝑔(𝑌𝑛)),

regardless of independence
4. Expected Value of Expected Values:

𝐸(𝐸(𝑌)) = 𝐸(𝑌)

(because the expected value of a random variable is a constant)

Finally, if 𝑋 and 𝑌 are independent, even products are easy:

𝐸(𝑋𝑌) = 𝐸(𝑋)𝐸(𝑌)

Conditional Expectation: With joint distributions, we are often interested in the
expected value of a variable 𝑌 if we could hold the other variable 𝑋 fixed. This is
the conditional expectation of 𝑌 given 𝑋 = 𝑥:

1. 𝑌 discrete: 𝐸(𝑌 |𝑋 = 𝑥) = ∑𝑦 𝑦𝑝𝑌 |𝑋(𝑦|𝑥)
2. 𝑌 continuous: 𝐸(𝑌 |𝑋 = 𝑥) = ∫𝑦 𝑦𝑓𝑌 |𝑋(𝑦|𝑥)𝑑𝑦

The conditional expectation is often used for prediction when one knows the value
of 𝑋 but not 𝑌

5.10 Variance and Covariance

We can also look at other summaries of the distribution, which build on the idea
of taking expectations. Variance tells us about the “spread” of the distribution; it
is the expected value of the squared deviations from the mean of the distribution.
The standard deviation is simply the square root of the variance.

Definition 5.14 (Variance). The Variance of a Random Variable 𝑌 is

Var(𝑌) = 𝐸[(𝑌 − 𝐸(𝑌))2] = 𝐸(𝑌 2) − [𝐸(𝑌)]2

The Standard Deviation is the square root of the variance :

𝑆𝐷(𝑌) = 𝜎𝑌 = √Var(𝑌)

108

Example 5.13 (Variance). Given the following PMF:

𝑓(𝑥) = {
3!

𝑥!(3−𝑥)!(1
2)3 𝑥 = 0, 1, 2, 3

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

What is Var(𝑥)?
Hint: First calculate 𝐸(𝑋) and 𝐸(𝑋2)

Definition 5.15 (Covariance and Correlation). The covariance measures the degree
to which two random variables vary together; if the covariance between 𝑋 and 𝑌 is
positive, X tends to be larger than its mean when Y is larger than its mean.

Cov(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝐸(𝑌))]
We can also write this as

Cov(𝑋, 𝑌) = 𝐸 (𝑋𝑌 − 𝑋𝐸(𝑌) − 𝐸(𝑋)𝑌 + 𝐸(𝑋)𝐸(𝑌))
= 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌) − 𝐸(𝑋)𝐸(𝑌) + 𝐸(𝑋)𝐸(𝑌)
= 𝐸(𝑋𝑌) − 𝐸(𝑋)𝐸(𝑌)

The covariance of a variable with itself is the variance of that variable.

The Covariance is unfortunately hard to interpret in magnitude. The correlation is
a standardized version of the covariance, and always ranges from -1 to 1.

Definition 5.16 (Correlation). The correlation coefficient is the covariance divided
by the standard deviations of 𝑋 and 𝑌 . It is a unitless measure and always takes
on values in the interval [−1, 1].

Corr(𝑋, 𝑌) = Cov(𝑋, 𝑌)
√Var(𝑋)Var(𝑌)

= Cov(𝑋, 𝑌)
𝑆𝐷(𝑋)𝑆𝐷(𝑌)

Properties of Variance and Covariance:

1. Var(𝑐) = 0
2. Var(𝑐𝑌) = 𝑐2Var(𝑌)
3. Cov(𝑌 , 𝑌) = Var(𝑌)
4. Cov(𝑋, 𝑌) = Cov(𝑌 , 𝑋)

109

5. Cov(𝑎𝑋, 𝑏𝑌) = 𝑎𝑏Cov(𝑋, 𝑌)
6. Cov(𝑋 + 𝑎, 𝑌) = Cov(𝑋, 𝑌)
7. Cov(𝑋 + 𝑍, 𝑌 + 𝑊) = Cov(𝑋, 𝑌) + Cov(𝑋, 𝑊) + Cov(𝑍, 𝑌) + Cov(𝑍, 𝑊)
8. Var(𝑋 + 𝑌) = Var(𝑋) + Var(𝑌) + 2Cov(𝑋, 𝑌)

Exercise 5.6 (Expectation and Variance). Suppose we have a PMF with the fol-
lowing characteristics:

𝑃(𝑋 = −2) = 1
5

𝑃(𝑋 = −1) = 1
6

𝑃(𝑋 = 0) = 1
5

𝑃(𝑋 = 1) = 1
15

𝑃(𝑋 = 2) = 11
30

1. Calculate the expected value of X

Define the random variable 𝑌 = 𝑋2.

2. Calculate the expected value of Y. (Hint: It would help to derive the PMF of
Y first in order to calculate the expected value of Y in a straightforward way)

3. Calculate the variance of X.

Exercise 5.7 (Expectation and Variance 2).

1. Find the expectation and variance

Given the following PDF:

𝑓(𝑥) = {
3

10(3𝑥 − 𝑥2) 0 ≤ 𝑥 ≤ 2
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Exercise 5.8 (Expectation and Variance 3).

1. Find the mean and standard deviation of random variable X. The PDF of this
X is as follows:

110

𝑓(𝑥) =
⎧{
⎨{⎩

1
4𝑥 0 ≤ 𝑥 ≤ 2
1
4(4 − 𝑥) 2 ≤ 𝑥 ≤ 4
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

2. Next, calculate 𝑃(𝑋 < 𝜇−𝜎) Remember, 𝜇 is the mean and 𝜎 is the standard
deviation

5.11 Special Distributions

Two discrete distributions used often are:

Definition 5.17 (Binomial Distribution). 𝑌 is distributed binomial if it represents
the number of “successes” observed in 𝑛 independent, identical “trials,” where the
probability of success in any trial is 𝑝 and the probability of failure is 𝑞 = 1 − 𝑝.

For any particular sequence of 𝑦 successes and 𝑛 − 𝑦 failures, the probability of
obtaining that sequence is 𝑝𝑦𝑞𝑛−𝑦 (by the multiplicative law and independence).
However, there are (𝑛

𝑦) = 𝑛!
(𝑛−𝑦)!𝑦! ways of obtaining a sequence with 𝑦 successes and

𝑛 − 𝑦 failures. So the binomial distribution is given by

𝑝(𝑦) = (𝑛
𝑦)𝑝𝑦𝑞𝑛−𝑦, 𝑦 = 0, 1, 2, … , 𝑛

with mean 𝜇 = 𝐸(𝑌) = 𝑛𝑝 and variance 𝜎2 = Var(𝑌) = 𝑛𝑝𝑞.

Example 5.14. Republicans vote for Democrat-sponsored bills 2% of the time.
What is the probability that out of 10 Republicans questioned, half voted for a
particular Democrat-sponsored bill? What is the mean number of Republicans
voting for Democrat-sponsored bills? The variance? 1. 𝑃(𝑌 = 5) = 1. 𝐸(𝑌) = 1.
Var(𝑌) = 6

Definition 5.18 (Poisson Distribution). A random variable 𝑌 has a Poisson distri-
bution if

𝑃(𝑌 = 𝑦) = 𝜆𝑦

𝑦! 𝑒−𝜆, 𝑦 = 0, 1, 2, … , 𝜆 > 0

The Poisson has the unusual feature that its expectation equals its variance: 𝐸(𝑌) =
Var(𝑌) = 𝜆. The Poisson distribution is often used to model rare event counts:

111

counts of the number of events that occur during some unit of time. 𝜆 is often
called the “arrival rate.”

Example 5.15. Border disputes occur between two countries through a Poisson
Distribution, at a rate of 2 per month. What is the probability of 0, 2, and less than
5 disputes occurring in a month?

Two continuous distributions used often are:

Definition 5.19 (Uniform Distribution). A random variable 𝑌 has a continuous
uniform distribution on the interval (𝛼, 𝛽) if its density is given by

𝑓(𝑦) = 1
𝛽 − 𝛼, 𝛼 ≤ 𝑦 ≤ 𝛽

The mean and variance of 𝑌 are 𝐸(𝑌) = 𝛼+𝛽
2 and Var(𝑌) = (𝛽−𝛼)2

12 .

Example 5.16. For 𝑌 uniformly distributed over (1, 3), what are the following
probabilities?

1. 𝑃(𝑌 = 2)
2. Its density evaluated at 2, or 𝑓(2)
3. 𝑃(𝑌 ≤ 2)
4. 𝑃(𝑌 > 2)

Definition 5.20 (Normal Distribution). A random variable 𝑌 is normally dis-
tributed with mean 𝐸(𝑌) = 𝜇 and variance Var(𝑌) = 𝜎2 if its density is

𝑓(𝑦) = 1√
2𝜋𝜎𝑒− (𝑦−𝜇)2

2𝜎2

See Figure Figure 5.3 are various Normal Distributions with the same 𝜇 = 1 and
two versions of the variance.

112

0.0

0.1

0.2

0.3

0.4

−5.0 −2.5 0.0 2.5 5.0
x

f(x
)

Thick line: variance = 2, Normal line: variance = 1

Figure 5.3: Normal Distribution Density

5.12 Summarizing Observed Events (Data)

So far, we’ve talked about distributions in a theoretical sense, looking at different
properties of random variables. We don’t observe random variables; we observe real-
izations of the random variable. These realizations of events are roughly equivalent
to what we mean by “data”.

Sample mean: This is the most common measure of central tendency, calculated
by summing across the observations and dividing by the number of observations.

̄𝑥 = 1
𝑛

𝑛
∑
𝑖=1

𝑥𝑖

The sample mean is an estimate of the expected value of a distribution.

Example:

X 6 3 7 5 5 5 6 4 7 2
Y 1 2 1 2 2 1 2 0 2 0

1. ̄𝑥 = ̄𝑦 =

113

2. median(x) = median(y) =
3. 𝑚𝑥 = 𝑚𝑦 =

Dispersion: We also typically want to know how spread out the data are rela-
tive to the center of the observed distribution. There are several ways to measure
dispersion.

Sample variance: The sample variance is the sum of the squared deviations from
the sample mean, divided by the number of observations minus 1.

̂Var(𝑋) = 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

Again, this is an estimate of the variance of a random variable; we divide by 𝑛 − 1
instead of 𝑛 in order to get an unbiased estimate.

Standard deviation: The sample standard deviation is the square root of the
sample variance.

̂𝑆𝐷(𝑋) = √ ̂Var(𝑋) = √ 1
𝑛 − 1

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

Example: Using table above, calculate:

1. Var(𝑋) = Var(𝑌) =
2. SD(𝑋) = SD(𝑌) =

Covariance and Correlation: Both of these quantities measure the degree to
which two variables vary together, and are estimates of the covariance and correla-
tion of two random variables as defined above.

1. Sample covariance: ̂Cov(𝑋, 𝑌) = 1
𝑛−1 ∑𝑛

𝑖=1(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)
2. Sample correlation: ̂Corr = ̂Cov(𝑋,𝑌)

√ ̂Var(𝑋) ̂Var(𝑌)

Example 5.17. Example: Using the above table, calculate the sample versions of:

1. Cov(𝑋, 𝑌)
2. Corr(𝑋, 𝑌)

114

5.13 Asymptotic Theory

In theoretical and applied research, asymptotic arguments are often made. In this
section we briefly introduce some of this material.

What are asymptotics? In probability theory, asymptotic analysis is the study of
limiting behavior. By limiting behavior, we mean the behavior of some random
process as the number of observations gets larger and larger.

Why is this important? We rarely know the true process governing the events we
see in the social world. It is helpful to understand how such unknown processes
theoretically must behave and asymptotic theory helps us do this.

5.13.1 CLT and LLN

We are now finally ready to revisit, with a bit more precise terms, the two pillars of
statistical theory we motivated Section Section 2.3 with.

Theorem 5.1 (Central Limit Theorem (i.i.d. case)). Let {𝑋𝑛} = {𝑋1, 𝑋2, …}
be a sequence of i.i.d. random variables with finite mean (𝜇) and variance (𝜎2).
Then, the sample mean �̄�𝑛 = 𝑋1+𝑋2+⋯+𝑋𝑛

𝑛 increasingly converges into a Normal
distribution.

�̄�𝑛 − 𝜇
𝜎/√𝑛

𝑑−→ Normal(0, 1),

Another way to write this as a probability statement is that for all real numbers
𝑎,

𝑃 (�̄�𝑛 − 𝜇
𝜎/√𝑛 ≤ 𝑎) → Φ(𝑎)

as 𝑛 → ∞, where

Φ(𝑥) = ∫
𝑥

−∞

1√
2𝜋𝑒− 𝑥2

2 𝑑𝑥

is the CDF of a Normal distribution with mean 0 and variance 1.

This result means that, as 𝑛 grows, the distribution of the sample mean �̄�𝑛 =
1
𝑛(𝑋1 +𝑋2 +⋯+𝑋𝑛) is approximately normal with mean 𝜇 and standard deviation
𝜎√𝑛 , i.e.,

�̄�𝑛 ≈ 𝒩(𝜇, 𝜎2

𝑛).

115

The standard deviation of �̄�𝑛 (which is roughly a measure of the precision of �̄�𝑛
as an estimator of 𝜇) decreases at the rate 1/√𝑛, so, for example, to increase its
precision by 10 (i.e., to get one more digit right), one needs to collect 102 = 100
times more units of data.

Intuitively, this result also justifies that whenever a lot of small, independent pro-
cesses somehow combine together to form the realized observations, practitioners
often feel comfortable assuming Normality.

Theorem 5.2 (Law of Large Numbers (LLN)). For any draw of independent random
variables with the same mean 𝜇, the sample average after 𝑛 draws, �̄�𝑛 = 1

𝑛(𝑋1 +
𝑋2 + … + 𝑋𝑛), converges in probability to the expected value of 𝑋, 𝜇 as 𝑛 → ∞:

lim
𝑛→∞

𝑃(|�̄�𝑛 − 𝜇| > 𝜀) = 0

A shorthand of which is �̄�𝑛
𝑝
−→ 𝜇, where the arrow is read as “converges in probability

to”.

as 𝑛 → ∞. In other words, 𝑃(lim𝑛→∞ �̄�𝑛 = 𝜇) = 1. This is an important motivation
for the widespread use of the sample mean, as well as the intuition link between
averages and expected values.

More precisely this version of the LLN is called the weak law of large numbers
because it leaves open the possibility that |�̄�𝑛 − 𝜇| > 𝜀 occurs many times. The
strong law of large numbers states that, under a few more conditions, the probability
that the limit of the sample average is the true mean is 1 (and other possibilities
occur with probability 0), but the difference is rarely consequential in practice.

The Strong Law of Large Numbers holds so long as the expected value exists; no
other assumptions are needed. However, the rate of convergence will differ greatly
depending on the distribution underlying the observed data. When extreme obser-
vations occur often (i.e. kurtosis is large), the rate of convergence is much slower.
Cf. The distribution of financial returns.

5.13.2 Big 𝒪 Notation

Some of you may encounter “big-OH’ ’-notation. If 𝑓, 𝑔 are two functions, we say
that 𝑓 = 𝒪(𝑔) if there exists some constant, 𝑐, such that 𝑓(𝑛) ≤ 𝑐 × 𝑔(𝑛) for large
enough 𝑛. This notation is useful for simplifying complex problems in game theory,
computer science, and statistics.

116

Example.

What is 𝒪(5 exp(0.5𝑛) + 𝑛2 + 𝑛/2)? Answer: exp(𝑛). Why? Because, for large 𝑛,

5 exp(0.5𝑛) + 𝑛2 + 𝑛/2
exp(𝑛) ≤ 𝑐 exp(𝑛)

exp(𝑛) = 𝑐.

whenever 𝑛 > 4 and where 𝑐 = 1.

Answers to Examples and Exercises

Answer to Example Example 5.2:

1. 5 × 5 × 5 = 125
2. 5 × 4 × 3 = 60
3. (5

3) = 5!
(5−3)!3! = 5×4

2×1 = 10

Answer to Exercise Exercise 5.1:

1. (52
4) = 52!

(52−4)!4! = 270725

Answer to Example Example 5.3:

1. {1, 2, 3, 4, 5, 6}
2. {5, 6}
3. {1, 2, 7, 8, 9, 10}
4. {3, 4}

Answer to Exercise Exercise 5.2:

Sample Space: {2, 3, 4, 5, 6, 7, 8}

1. {3, 4, 5, 6, 7}
2. {4, 5, 6}

Answer to Example Example 5.4:

1. 1, 2, 3, 4, 5, 6
2. 1

6

3. 0
4. 1

2

5. 4
6 = 2

3

117

6. 1
7. 𝐴 ∪ 𝐵 = {1, 2, 3, 4, 6}, 𝐴 ∩ 𝐵 = {2}, 5

6

Answer to Exercise Exercise 5.3:

1. 𝑃(𝑋 = 5) = 4
16 , 𝑃(𝑋 = 3) = 2

16 , 𝑃(𝑋 = 6) = 3
16

2. What is 𝑃(𝑋 = 5 ∪ 𝑋 = 3)𝐶 = 10
16?

Answer to Example Example 5.5:

1. 𝑛𝑎𝑏+𝑛𝑎𝑏𝑐
𝑁

2. 𝑛𝑎𝑏+𝑛𝑎𝑐𝑏
𝑁

3. 𝑛𝑎𝑏
𝑁

4.
𝑛𝑎𝑏

𝑁𝑛𝑎𝑏+𝑛𝑎𝑐𝑏
𝑁

= 𝑛𝑎𝑏
𝑛𝑎𝑏+𝑛𝑎𝑐𝑏

5.
𝑛𝑎𝑏

𝑁𝑛𝑎𝑏+𝑛𝑎𝑏𝑐
𝑁

= 𝑛𝑎𝑏
𝑛𝑎𝑏+𝑛𝑎𝑏𝑐

Answer to Example Example 5.6:

𝑃(1|𝑂𝑑𝑑) = 𝑃(1∩𝑂𝑑𝑑)
𝑃(𝑂𝑑𝑑) =

1
6
1
2

= 1
3

Answer to Example Example 5.7:

We are given that

𝑃(𝐷) = .4, 𝑃 (𝐷𝑐) = .6, 𝑃 (𝑆|𝐷) = .5, 𝑃 (𝑆|𝐷𝑐) = .9

Using this, Bayes’ Law and the Law of Total Probability, we know:

𝑃(𝐷|𝑆) = 𝑃(𝐷)𝑃(𝑆|𝐷)
𝑃(𝐷)𝑃(𝑆|𝐷) + 𝑃(𝐷𝑐)𝑃 (𝑆|𝐷𝑐)

𝑃 (𝐷|𝑆) = .4 × .5
.4 × .5 + .6 × .9 = .27

Answer to Exercise Exercise 5.4:

We are given that

𝑃(𝑀) = .02, 𝑃 (𝐶|𝑀) = .95, 𝑃 (𝐶𝑐|𝑀𝑐) = .97

𝑃(𝑀|𝐶) = 𝑃(𝐶|𝑀)𝑃(𝑀)
𝑃(𝐶)

118

= 𝑃(𝐶|𝑀)𝑃(𝑀)
𝑃(𝐶|𝑀)𝑃(𝑀) + 𝑃(𝐶|𝑀𝑐)𝑃 (𝑀𝑐)

= 𝑃(𝐶|𝑀)𝑃(𝑀)
𝑃(𝐶|𝑀)𝑃(𝑀) + [1 − 𝑃(𝐶𝑐|𝑀𝑐)]𝑃 (𝑀𝑐)

= .95 × .02
.95 × .02 + .03 × .98 = .38

Answer to Example Example 5.11:

𝐸(𝑌) = 7/2
We would never expect the result of a rolled die to be 7/2, but that would be the
average over a large number of rolls of the die.

Answer to Example Example 5.12

0.75

Answer to Example Example 5.13:

𝐸(𝑋) = 0 × 1
8 + 1 × 3

8 + 2 × 3
8 + 3 × 1

8 = 3
2

Since there is a 1 to 1 mapping from 𝑋 to 𝑋2 ∶ 𝐸(𝑋2) = 0× 1
8 +1× 3

8 +4× 3
8 +9× 1

8 =
24
8 = 3

Var(𝑥) = 𝐸(𝑋2) − 𝐸(𝑥)2

= 3 − (3
2)2

= 3
4

Answer to Exercise Exercise 5.6:

1. 𝐸(𝑋) = −2(1
5) + −1(1

6) + 0(1
5) + 1(1

15) + 2(11
30) = 7

30

2. 𝐸(𝑌) = 0(1
5) + 1(7

30) + 4(17
30) = 5

2

3.

119

Var(𝑋) = 𝐸[𝑋2] − 𝐸[𝑋]2
= 𝐸(𝑌) − 𝐸(𝑋)2

= 5
2 − 7

30
2

≈ 2.45

Answer to Exercise Exercise 5.7:

1. expectation = 6
5 , variance = 6

25

Answer to Exercise Exercise 5.8:

1. mean = 2, standard deviation = √(2
3)

2. 1
8(2 − √(2

3))2

120

6 Linear Algebra

Topics:

• Working with Vectors
• Linear Independence
• Basics of Matrix Algebra
• Square Matrices
• Linear Equations
• Systems of Linear Equations
• Systems of Equations as Matrices
• Solving Augmented Matrices and Systems of Equations
• Rank
• The Inverse of a Matrix
• Inverse of Larger Matrices

6.1 Working with Vectors

Vector: A vector in 𝑛-space is an ordered list of 𝑛 numbers. These numbers can
be represented as either a row vector or a column vector:

v (𝑣1 𝑣2 … 𝑣𝑛) , v =
⎛⎜⎜⎜⎜
⎝

𝑣1
𝑣2
⋮

𝑣𝑛

⎞⎟⎟⎟⎟
⎠

We can also think of a vector as defining a point in 𝑛-dimensional space, usually
R𝑛; each element of the vector defines the coordinate of the point in a particular
direction.

Vector Addition and Subtraction: If two vectors, u and v, have the same length
(i.e. have the same number of elements), they can be added (subtracted) together:

u + v = (𝑢1 + 𝑣1 𝑢2 + 𝑣2 ⋯ 𝑢𝑘 + 𝑣𝑛)

u − v = (𝑢1 − 𝑣1 𝑢2 − 𝑣2 ⋯ 𝑢𝑘 − 𝑣𝑛)

121

Scalar Multiplication: The product of a scalar 𝑐 (i.e. a constant) and vector v is:

𝑐v = (𝑐𝑣1 𝑐𝑣2 … 𝑐𝑣𝑛)

Vector Inner Product: The inner product (also called the dot product or scalar
product) of two vectors u and v is again defined if and only if they have the same
number of elements

u ⋅ v = 𝑢1𝑣1 + 𝑢2𝑣2 + ⋯ + 𝑢𝑛𝑣𝑛 =
𝑛

∑
𝑖=1

𝑢𝑖𝑣𝑖

If u ⋅ v = 0, the two vectors are orthogonal (or perpendicular).

Vector Norm: The norm of a vector is a measure of its length. There are
many different ways to calculate the norm, but the most common is the Euclidean
norm (which corresponds to our usual conception of distance in three-dimensional
space):

||v|| = √
v ⋅ v = √𝑣1𝑣1 + 𝑣2𝑣2 + ⋯ + 𝑣𝑛𝑣𝑛

Example 6.1 (Vector Algebra). Let 𝑎 = (2 1 2), 𝑏 = (3 4 5). Calculate the
following:

1. 𝑎 − 𝑏
2. 𝑎 ⋅ 𝑏

Exercise 6.1 (Vector Algebra). Let 𝑢 = (7 1 −5 3), 𝑣 = (9 −3 2 8), 𝑤 =
(1 13 −7 2 15), and 𝑐 = 2. Calculate the following:

1. 𝑢 − 𝑣
2. 𝑐𝑤
3. 𝑢 ⋅ 𝑣
4. 𝑤 ⋅ 𝑣

122

6.2 Linear Independence

Linear combinations: The vector u is a linear combination of the vectors
v1, v2, ⋯ , v𝑘 if

u = 𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑘v𝑘

For example, (9 13 17) is a linear combination of the following three vectors:
(1 2 3), (2 3 4), and (3 4 5). This is because (9 13 17) = (2) (1 2 3)
+(−1) (2 3 4) + 3 (3 4 5)
Linear independence: A set of vectors v1, v2, ⋯ , v𝑘 is linearly independent if the
only solution to the equation

𝑐1v1 + 𝑐2v2 + ⋯ + 𝑐𝑘v𝑘 = 0
is 𝑐1 = 𝑐2 = ⋯ = 𝑐𝑘 = 0. If another solution exists, the set of vectors is linearly
dependent.

A set 𝑆 of vectors is linearly dependent if and only if at least one of the vectors in
𝑆 can be written as a linear combination of the other vectors in 𝑆.
Linear independence is only defined for sets of vectors with the same number of
elements; any linearly independent set of vectors in 𝑛-space contains at most 𝑛
vectors.

Since (9 13 17) is a linear combination of (1 2 3), (2 3 4), and (3 4 5),
these 4 vectors constitute a linearly dependent set.

Example 6.2 (Linear Independence). Are the following sets of vectors linearly
independent?

1. (2 3 1) and (4 6 1)
2. (1 0 0), (0 5 0), and (10 10 0)

Exercise 6.2 (Linear Independence). Are the following sets of vectors linearly in-
dependent?

1.

v1 = ⎛⎜
⎝

1
0
0
⎞⎟
⎠

, v2 = ⎛⎜
⎝

1
0
1
⎞⎟
⎠

, v3 = ⎛⎜
⎝

1
1
1
⎞⎟
⎠

2.

v1 = ⎛⎜
⎝

2
2
1
⎞⎟
⎠

, v2 = ⎛⎜
⎝

−4
6
5

⎞⎟
⎠

, v3 = ⎛⎜
⎝

−2
8
6

⎞⎟
⎠

123

6.3 Basics of Matrix Algebra

Matrix: A matrix is an array of real numbers arranged in 𝑚 rows by 𝑛 columns.
The dimensionality of the matrix is defined as the number of rows by the number
of columns, 𝑚 × 𝑛.

A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

Note that you can think of vectors as special cases of matrices; a column vector of
length 𝑘 is a 𝑘 × 1 matrix, while a row vector of the same length is a 1 × 𝑘 matrix.

It’s also useful to think of matrices as being made up of a collection of row or column
vectors. For example,

A = (a1 a2 ⋯ am)

Matrix Addition: Let A and B be two 𝑚 × 𝑛 matrices.

A + B =
⎛⎜⎜⎜⎜
⎝

𝑎11 + 𝑏11 𝑎12 + 𝑏12 ⋯ 𝑎1𝑛 + 𝑏1𝑛
𝑎21 + 𝑏21 𝑎22 + 𝑏22 ⋯ 𝑎2𝑛 + 𝑏2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 + 𝑏𝑚1 𝑎𝑚2 + 𝑏𝑚2 ⋯ 𝑎𝑚𝑛 + 𝑏𝑚𝑛

⎞⎟⎟⎟⎟
⎠

Note that matrices A and B must have the same dimensionality, in which case they
are conformable for addition.

Example 6.3.
A = (1 2 3

4 5 6) , B = (1 2 1
2 1 2)

A + B =

Scalar Multiplication: Given the scalar 𝑠, the scalar multiplication of 𝑠A is

𝑠A = 𝑠
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

𝑠𝑎11 𝑠𝑎12 ⋯ 𝑠𝑎1𝑛
𝑠𝑎21 𝑠𝑎22 ⋯ 𝑠𝑎2𝑛

⋮ ⋮ ⋱ ⋮
𝑠𝑎𝑚1 𝑠𝑎𝑚2 ⋯ 𝑠𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

124

Example 6.4. 𝑠 = 2, A = (1 2 3
4 5 6)

𝑠A =

Matrix Multiplication: If A is an 𝑚 × 𝑘 matrix and B is a 𝑘 × 𝑛 matrix, then
their product C = AB is the 𝑚 × 𝑛 matrix where

𝑐𝑖𝑗 = 𝑎𝑖1𝑏1𝑗 + 𝑎𝑖2𝑏2𝑗 + ⋯ + 𝑎𝑖𝑘𝑏𝑘𝑗

Example 6.5.

1. ⎛⎜
⎝

𝑎 𝑏
𝑐 𝑑
𝑒 𝑓

⎞⎟
⎠

(𝐴 𝐵
𝐶 𝐷) =

2. (1 2 −1
3 1 4) ⎛⎜

⎝

−2 5
4 −3
2 1

⎞⎟
⎠

=

Note that the number of columns of the first matrix must equal the number of rows
of the second matrix, in which case they are conformable for multiplication.
The sizes of the matrices (including the resulting product) must be

(𝑚 × 𝑘)(𝑘 × 𝑛) = (𝑚 × 𝑛)

Also note that if AB exists, BA exists only if dim(A) = 𝑚 × 𝑛 and dim(B) =
𝑛 × 𝑚.

This does not mean that AB = BA. AB = BA is true only in special circumstances,
like when A or B is an identity matrix or A = B−1.

Laws of Matrix Algebra:

1. Associative: (A + B) + C = A + (B + C)
(AB)C = A(BC)

2. Commutative: A + B = B + A

3. Distributive: A(B + C) = AB + AC
(A + B)C = AC + BC

125

Commutative law for multiplication does not hold – the order of multiplication
matters:

AB ≠ BA

For example,

A = (1 2
−1 3) , B = (2 1

0 1)

AB = (2 3
−2 2) , BA = (1 7

−1 3)

Transpose: The transpose of the 𝑚 × 𝑛 matrix A is the 𝑛 × 𝑚 matrix A𝑇 (also
written A′) obtained by interchanging the rows and columns of A.

For example,

A = (4 −2 3
0 5 −1) , A𝑇 = ⎛⎜

⎝

4 0
−2 5
3 −1

⎞⎟
⎠

B = ⎛⎜
⎝

2
−1
3

⎞⎟
⎠

, B𝑇 = (2 −1 3)

The following rules apply for transposed matrices:

1. (A + B)𝑇 = A𝑇 + B𝑇

2. (A𝑇)𝑇 = A

3. (𝑠A)𝑇 = 𝑠A𝑇

4. (AB)𝑇 = B𝑇 A𝑇 ; and by induction (ABC)𝑇 = C𝑇 B𝑇 A𝑇

Example of (AB)𝑇 = B𝑇 A𝑇 :

A = (1 3 2
2 −1 3) , B = ⎛⎜

⎝

0 1
2 2
3 −1

⎞⎟
⎠

(AB)𝑇 = ⎡⎢
⎣

(1 3 2
2 −1 3) ⎛⎜

⎝

0 1
2 2
3 −1

⎞⎟
⎠

⎤⎥
⎦

𝑇

= (12 7
5 −3)

B𝑇 A𝑇 = (0 2 3
1 2 −1) ⎛⎜

⎝

1 2
3 −1
2 3

⎞⎟
⎠

= (12 7
5 −3)

126

Exercise 6.3 (Matrix Multiplication). Let

𝐴 = (2 0 −1 1
1 2 0 1)

𝐵 =
⎛⎜⎜⎜⎜
⎝

1 5 −7
1 1 0
0 −1 1
2 0 0

⎞⎟⎟⎟⎟
⎠

𝐶 = (3 2 −1
0 4 6)

Calculate the following:

1.
𝐴𝐵

2.
𝐵𝐴

3.
(𝐵𝐶)𝑇

4.
𝐵𝐶𝑇

6.4 Systems of Linear Equations

Linear Equation: 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ + 𝑎𝑛𝑥𝑛 = 𝑏
𝑎𝑖 are parameters or coefficients. 𝑥𝑖 are variables or unknowns.

Linear because only one variable per term and degree is at most 1.

We are often interested in solving linear systems like

𝑥 − 3𝑦 = −3
2𝑥 + 𝑦 = 8

More generally, we might have a system of 𝑚 equations in 𝑛 unknowns

127

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

A solution to a linear system of 𝑚 equations in 𝑛 unknowns is a set of 𝑛 numbers
𝑥1, 𝑥2, ⋯ , 𝑥𝑛 that satisfy each of the 𝑚 equations.

Example: 𝑥 = 3 and 𝑦 = 2 is the solution to the above 2 × 2 linear system. If you
graph the two lines, you will find that they intersect at (3, 2).
Does a linear system have one, no, or multiple solutions? For a system of 2 equations
with 2 unknowns (i.e., two lines): _
One solution: The lines intersect at exactly one point.

No solution: The lines are parallel.

Infinite solutions: The lines coincide.

Methods to solve linear systems:

1. Substitution
2. Elimination of variables
3. Matrix methods

Exercise 6.4 (Linear Equations). Provide a system of 2 equations with 2 unknowns
that has

1. one solution

2. no solution

3. infinite solutions

6.5 Systems of Equations as Matrices

Matrices provide an easy and efficient way to represent linear systems such as

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1
𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

⋮ ⋮ ⋮
𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

128

as
Ax = b

where

The 𝑚 × 𝑛 coefficient matrix A is an array of 𝑚𝑛 real numbers arranged in 𝑚
rows by 𝑛 columns:

A =
⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛
𝑎21 𝑎22 ⋯ 𝑎2𝑛

⋮ ⋱ ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛

⎞⎟⎟⎟⎟
⎠

The unknown quantities are represented by the vector x =
⎛⎜⎜⎜⎜
⎝

𝑥1
𝑥2
⋮

𝑥𝑛

⎞⎟⎟⎟⎟
⎠
.

The right hand side of the linear system is represented by the vector b =
⎛⎜⎜⎜⎜
⎝

𝑏1
𝑏2
⋮

𝑏𝑚

⎞⎟⎟⎟⎟
⎠
.

Augmented Matrix: When we append b to the coefficient matrix A, we get the
augmented matrix Â = [A|b]

⎛⎜⎜⎜⎜
⎝

𝑎11 𝑎12 ⋯ 𝑎1𝑛 | 𝑏1
𝑎21 𝑎22 ⋯ 𝑎2𝑛 | 𝑏2

⋮ ⋱ ⋮ | ⋮
𝑎𝑚1 𝑎𝑚2 ⋯ 𝑎𝑚𝑛 | 𝑏𝑚

⎞⎟⎟⎟⎟
⎠

Exercise 6.5 (Augmented Matrix). Create an augmented matrix that represent
the following system of equations:

2𝑥1 − 7𝑥2 + 9𝑥3 − 4𝑥4 = 8
41𝑥2 + 9𝑥3 − 5𝑥6 = 11
𝑥1 − 15𝑥2 − 11𝑥5 = 9

129

6.6 Finding Solutions to Augmented Matrices and Systems
of Equations

Row Echelon Form: Our goal is to translate our augmented matrix or system of
equations into row echelon form. This will provide us with the values of the vector
x which solve the system. We use the row operations to change coefficients in the
lower triangle of the augmented matrix to 0. An augmented matrix of the form

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑎′
11 𝑎′

12 𝑎′
13 ⋯ 𝑎′

1𝑛 | 𝑏′
1

0 𝑎′
22 𝑎′

23 ⋯ 𝑎′
2𝑛 | 𝑏′

2
0 0 𝑎′

33 ⋯ 𝑎′
3𝑛 | 𝑏′

3
0 0 0 ⋱ ⋮ | ⋮
0 0 0 0 𝑎′

𝑚𝑛 | 𝑏′
𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

is said to be in row echelon form — each row has more leading zeros than the row
preceding it.

Reduced Row Echelon Form: We can go one step further and put the matrix
into reduced row echelon form. Reduced row echelon form makes the value of x
which solves the system very obvious. For a system of 𝑚 equations in 𝑚 unknowns,
with no all-zero rows, the reduced row echelon form would be

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0 0 | 𝑏∗
1

0 1 0 0 0 | 𝑏∗
2

0 0 1 0 0 | 𝑏∗
3

0 0 0 ⋱ 0 | ⋮
0 0 0 0 1 | 𝑏∗

𝑚

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

Gaussian and Gauss-Jordan elimination: We can conduct elementary row op-
erations to get our augmented matrix into row echelon or reduced row echelon form.
The methods of transforming a matrix or system into row echelon and reduced row
echelon form are referred to as Gaussian elimination and Gauss-Jordan elimination,
respectively.

Elementary Row Operations: To do Gaussian and Gauss-Jordan elimination,
we use three basic operations to transform the augmented matrix into another aug-
mented matrix that represents an equivalent linear system – equivalent in the sense
that the same values of 𝑥𝑗 solve both the original and transformed matrix/system:

130

Interchanging Rows: Suppose we have the augmented matrix

Â = (𝑎11 𝑎12 | 𝑏1
𝑎21 𝑎22 | 𝑏2

)

If we interchange the two rows, we get the augmented matrix

(𝑎21 𝑎22 | 𝑏2
𝑎11 𝑎12 | 𝑏1

)

which represents a linear system equivalent to that represented by matrix Â.

Multiplying by a Constant: If we multiply the second row of matrix Â by a
constant 𝑐, we get the augmented matrix

(𝑎11 𝑎12 | 𝑏1
𝑐𝑎21 𝑐𝑎22 | 𝑐𝑏2

)

which represents a linear system equivalent to that represented by matrix Â.

Adding (subtracting) Rows: If we add (subtract) the first row of matrix Â to
the second, we obtain the augmented matrix

(𝑎11 𝑎12 | 𝑏1
𝑎11 + 𝑎21 𝑎12 + 𝑎22 | 𝑏1 + 𝑏2

)

which represents a linear system equivalent to that represented by matrix Â.

Example 6.6. Solve the following system of equations by using elementary row
operations:

𝑥 − 3𝑦 = −3
2𝑥 + 𝑦 = 8

Exercise 6.6 (Solving Systems of Equations). Put the following system of equations
into augmented matrix form. Then, using Gaussian or Gauss-Jordan elimination,
solve the system of equations by putting the matrix into row echelon or reduced row
echelon form.

1.
⎧{
⎨{⎩

𝑥 + 𝑦 + 2𝑧 = 2
3𝑥 − 2𝑦 + 𝑧 = 1
𝑦 − 𝑧 = 3

2.
⎧{
⎨{⎩

2𝑥 + 3𝑦 − 𝑧 = −8
𝑥 + 2𝑦 − 𝑧 = 12
−𝑥 − 4𝑦 + 𝑧 = −6

131

6.7 Rank — and Whether a System Has One, Infinite, or
No Solutions

To determine how many solutions exist, we can use information about (1) the number
of equations 𝑚, (2) the number of unknowns 𝑛, and (3) the rank of the matrix
representing the linear system.

Rank: The maximum number of linearly independent row or column vectors in the
matrix. This is equivalent to the number of nonzero rows of a matrix in row echelon
form. For any matrix A, the row rank always equals column rank, and we refer to
this number as the rank of A.

For example

⎛⎜
⎝

1 2 3
0 4 5
0 0 6

⎞⎟
⎠

Rank = 3

⎛⎜
⎝

1 2 3
0 4 5
0 0 0

⎞⎟
⎠

Rank = 2

Exercise 6.7 (Rank of Matrices). Find the rank of each matrix below:

(Hint: transform the matrices into row echelon form. Remember that the number
of nonzero rows of a matrix in row echelon form is the rank of that matrix)

1.⎛⎜
⎝

1 1 2
2 1 3
1 2 3

⎞⎟
⎠

2.
⎛⎜⎜⎜⎜
⎝

1 3 3 −3 3
1 3 1 1 3
1 3 2 −1 −2
1 3 0 3 −2

⎞⎟⎟⎟⎟
⎠

Answer to Exercise Exercise 6.7:

1. rank is 2

2. rank is 3

132

6.8 The Inverse of a Matrix

Identity Matrix: The 𝑛 × 𝑛 identity matrix I𝑛 is the matrix whose diagonal
elements are 1 and all off-diagonal elements are 0. Examples:

I2 = (1 0
0 1) , I3 = ⎛⎜

⎝

1 0 0
0 1 0
0 0 1

⎞⎟
⎠

Inverse Matrix: An 𝑛 × 𝑛 matrix A is nonsingular or invertible if there exists
an 𝑛 × 𝑛 matrix A−1 such that

AA−1 = A−1A = I𝑛

where A−1 is the inverse of A. If there is no such A−1, then A is singular or not
invertible.

Example: Let

A = (2 3
2 2) , B = (−1 3

2
1 −1)

Since
AB = BA = I𝑛

we conclude that B is the inverse, A−1, of A and that A is nonsingular.

Properties of the Inverse:

• If the inverse exists, it is unique.

• If A is nonsingular, then A−1 is nonsingular.

• (A−1)−1 = A

• If A and B are nonsingular, then AB is nonsingular

• (AB)−1 = B−1A−1

• If A is nonsingular, then (A𝑇)−1 = (A−1)𝑇

Procedure to Find A−1: We know that if B is the inverse of A, then

AB = BA = I𝑛

Looking only at the first and last parts of this

AB = I𝑛

133

Solving for B is equivalent to solving for 𝑛 linear systems, where each column of B is
solved for the corresponding column in I𝑛. We can solve the systems simultaneously
by augmenting A with I𝑛 and performing Gauss-Jordan elimination on A. If Gauss-
Jordan elimination on [A|I𝑛] results in [I𝑛|B], then B is the inverse of A. Otherwise,
A is singular.

To summarize: To calculate the inverse of A

1. Form the augmented matrix [A|I𝑛]
2. Using elementary row operations, transform the augmented matrix to reduced

row echelon form.

3. The result of step 2 is an augmented matrix [C|B].

a. If C = I𝑛, then B = A−1.

b. If C ≠ I𝑛, then C has a row of zeros. This means A is singular and A−1

does not exist.

Example 6.7. Find the inverse of the following matricies:

1. A = ⎛⎜
⎝

1 1 1
0 2 3
5 5 1

⎞⎟
⎠

Exercise 6.8 (Finding the inverse of matrices). Find the inverse of the following
matrix:

1. A = ⎛⎜
⎝

1 0 4
0 2 0
0 0 1

⎞⎟
⎠

6.9 Linear Systems and Inverses

Let’s return to the matrix representation of a linear system

Ax = b

If A is an 𝑛 × 𝑛 matrix,then Ax = b is a system of 𝑛 equations in 𝑛 unknowns.
Suppose A is nonsingular. Then A−1 exists. To solve this system, we can multiply
each side by A−1 and reduce it as follows:

134

A−1(Ax) = A−1b
(A−1A)x = A−1b

Inx = A−1b
x = A−1b

Hence, given A and b and given that A is nonsingular, then x = A−1b is a unique
solution to this system.

Exercise 6.9 (Solve linear system using inverses). Use the inverse matrix to solve
the following linear system:

−3𝑥 + 4𝑦 = 5
2𝑥 − 𝑦 = −10

Hint: the linear system above can be written in the matrix form

Az = b

given

A = (−3 4
2 −1) ,

z = (𝑥
𝑦) ,

and
b = (5

−10)

6.10 Determinants

Singularity: Determinants can be used to determine whether a square matrix is
nonsingular.

A square matrix is nonsingular if and only if its determinant is not zero.

Determinant of a 1 × 1 matrix, A, equals 𝑎11

Determinant of a 2 × 2 matrix, A, ∣𝑎11 𝑎12
𝑎21 𝑎22

∣:

135

det(A) = |A|
= 𝑎11|𝑎22| − 𝑎12|𝑎21|
= 𝑎11𝑎22 − 𝑎12𝑎21

We can extend the second to last equation above to get the definition of the deter-
minant of a 3 × 3 matrix:

∣
𝑎11 𝑎12 𝑎13
𝑎21 𝑎22 𝑎23
𝑎31 𝑎32 𝑎33

∣ = 𝑎11 ∣𝑎22 𝑎23
𝑎32 𝑎33

∣ − 𝑎12 ∣𝑎21 𝑎23
𝑎31 𝑎33

∣ + 𝑎13 ∣𝑎21 𝑎22
𝑎31 𝑎32

∣

= 𝑎11(𝑎22𝑎33 − 𝑎23𝑎32) − 𝑎12(𝑎21𝑎33 − 𝑎23𝑎31) + 𝑎13(𝑎21𝑎32 − 𝑎22𝑎31)

Let’s extend this now to any 𝑛 × 𝑛 matrix. Let’s define A𝑖𝑗 as the (𝑛 − 1) × (𝑛 − 1)
submatrix of A obtained by deleting row 𝑖 and column 𝑗. Let the (𝑖, 𝑗)th minor of
A be the determinant of A𝑖𝑗:

𝑀𝑖𝑗 = |A𝑖𝑗|
Then for any 𝑛 × 𝑛 matrix A

|A| = 𝑎11𝑀11 − 𝑎12𝑀12 + ⋯ + (−1)𝑛+1𝑎1𝑛𝑀1𝑛

For example, in figuring out whether the following matrix has an inverse?

A = ⎛⎜
⎝

1 1 1
0 2 3
5 5 1

⎞⎟
⎠

1. Calculate its determinant.

= 1(2 − 15) − 1(0 − 15) + 1(0 − 10)
= −13 + 15 − 10
= −8

2. Since |A| ≠ 0, we conclude that A has an inverse.

Exercise 6.10 (Determinants and Inverses). Determine whether the following ma-
trices are nonsingular:

136

1. ⎛⎜
⎝

1 0 1
2 1 2
1 0 −1

⎞⎟
⎠

2. ⎛⎜
⎝

2 1 2
1 0 1
4 1 4

⎞⎟
⎠

6.11 Getting Inverse of a Matrix using its Determinant

Thus far, we have a number of algorithms to

1. Find the solution of a linear system,
2. Find the inverse of a matrix

but these remain just that — algorithms. At this point, we have no way of telling
how the solutions 𝑥𝑗 change as the parameters 𝑎𝑖𝑗 and 𝑏𝑖 change, except by changing
the values and “rerunning” the algorithms.

With determinants, we can provide an explicit formula for the inverse and therefore
provide an explicit formula for the solution of an 𝑛 × 𝑛 linear system.

Hence, we can examine how changes in the parameters and 𝑏𝑖 affect the solutions
𝑥𝑗.

Determinant Formula for the Inverse of a 2 × 2:

The determinant of a 2 × 2 matrix A (𝑎 𝑏
𝑐 𝑑) is defined as:

1
det(A) (𝑑 −𝑏

−𝑐 𝑎)

For example, Let’s calculate the inverse of matrix A from Exercise Exercise 6.9 using
the determinant formula.

Recall,

𝐴 = (−3 4
2 −1)

det(A) = (−3)(−1) − (4)(2) = 3 − 8 = −5

137

1
det(A) (−1 −4

−2 −3)

1
−5 (−1 −4

−2 −3)

(
1
5

4
52

5
3
5
)

Exercise 6.11 (Calculate Inverse using Determinant Formula). Caculate the in-
verse of A

𝐴 = (3 5
−7 2)

Answers to Examples and Exercises

Answer to Example Example 6.1:

1. (−1 −3 −3)
2. 6 + 4 + 10 = 20

Answer to Exercise Exercise 6.1:

1. (−2 4 −7 −5)
2. (2 26 −14 4 30)
3. 63 -3 -10 + 24 = 74
4. undefined

Answer to Example Example 6.2:

1. yes
2. no

Answer to Exercise Exercise 6.2:

1. yes
2. no (−𝑣1 − 𝑣2 + 𝑣3 = 0)

138

Answer to Example Example 6.3:

A + B = (2 4 4
6 6 8)

Answer to Example Example 6.4:

𝑠A = (2 4 6
8 10 12)

Answer to Example Example 6.5:

1. ⎛⎜
⎝

𝑎𝐴 + 𝑏𝐶 𝑎𝐵 + 𝑏𝐷
𝑐𝐴 + 𝑑𝐶 𝑐𝐵 + 𝑑𝐷
𝑒𝐴 + 𝑓𝐶 𝑒𝐵 + 𝑓𝐷

⎞⎟
⎠

2. (1(−2) + 2(4) − 1(2) 1(5) + 2(−3) − 1(1)
3(−2) + 1(4) + 4(2) 3(5) + 1(−3) + 4(1)) = (4 −2

6 16)

Answer to Exercise Exercise 6.3:

1. 𝐴𝐵 = (4 11 −15
5 7 −7)

2. 𝐵𝐴 = undefined

3. (𝐵𝐶)𝑇 = undefined

4. 𝐵𝐶𝑇 =
⎛⎜⎜⎜⎜
⎝

1 5 −7
1 1 0
0 −1 1
2 0 0

⎞⎟⎟⎟⎟
⎠

⎛⎜
⎝

3 0
2 4

−1 6
⎞⎟
⎠

=
⎛⎜⎜⎜⎜
⎝

20 −22
5 4

−3 2
6 0

⎞⎟⎟⎟⎟
⎠

Answer to Exercise Exercise 6.4:

There are many answers to this. Some possible simple ones are as follows:

1. One solution:
−𝑥 + 𝑦 = 0
𝑥 + 𝑦 = 2

2. No solution:
−𝑥 + 𝑦 = 0
𝑥 − 𝑦 = 2

3. Infinite solutions:
−𝑥 + 𝑦 = 0
2𝑥 − 2𝑦 = 0

139

Answer to Exercise Exercise 6.5:

⎛⎜
⎝

2 −7 9 −4 0 0| 8
0 41 9 0 0 5| 11
1 −15 0 0 −11 0| 9

⎞⎟
⎠

Answer to Example Example 6.6:

𝑥 − 3𝑦 = −3
2𝑥 + 𝑦 = 8

𝑥 − 3𝑦 = −3
7𝑦 = 14

𝑥 − 3𝑦 = −3
𝑦 = 2

𝑥 = 3
𝑦 = 2

Answer to Exercise Exercise 6.6:

1. x = 2, y = 2, z = -1

2. x = -17, y = -3, z = -35

Answer to Exercise Exercise 6.7:

1. rank is 2

2. rank is 3

Answer to Example Example 6.7:

⎛⎜
⎝

1 1 1 1 0 0
0 2 3 0 1 0
5 5 1 0 0 1

⎞⎟
⎠

⎛⎜
⎝

1 1 1 1 0 0
0 2 3 0 1 0
0 0 −4 −5 0 1

⎞⎟
⎠

⎛⎜
⎝

1 1 1 1 0 0
0 2 3 0 1 0
0 0 1 5/4 0 −1/4

⎞⎟
⎠

140

⎛⎜
⎝

1 1 0 −1/4 0 1/4
0 2 0 −15/4 1 3/4
0 0 1 5/4 0 −1/4

⎞⎟
⎠

⎛⎜
⎝

1 1 0 −1/4 0 1/4
0 1 0 −15/8 1/2 3/8
0 0 1 5/4 0 −1/4

⎞⎟
⎠

⎛⎜
⎝

1 0 0 13/8 −1/2 −1/8
0 1 0 −15/8 1/2 3/8
0 0 1 5/4 0 −1/4

⎞⎟
⎠

A−1 = ⎛⎜
⎝

13/8 −1/2 −1/8
−15/8 1/2 3/8

5/4 0 −1/4
⎞⎟
⎠

Answer to Exercise Exercise 6.8:

1. A−1 = ⎛⎜
⎝

1 0 −4
0 1

2 0
0 0 1

⎞⎟
⎠

Answer to Exercise Exercise 6.9:

z = A−1b = (1/5 4/5
2/5 3/5) (5

−10) = (−7
−4) = (x

y)

Answer to Exercise Exercise 6.10:

1. nonsingular

2. singular

Answer to Exercise Exercise 6.11:

(
2

41
−5
417

41
3

41
)

141

Part II

Programming

142

7 Orientation and Reading in Data

Module originally written by Shiro Kuriwaki.

Welcome to the first in-class session for programming. Up till this point, you should
have already:

• Completed the R Visualization and Programming primers (under “The Ba-
sics”) on your own at https://rstudio.cloud/learn/primers/,

• Made an account at RStudio Cloud and join the Math Prefresher 2019 Space,
and

• Successfully signed up for the University wi-fi: https://getonline.harvard.edu/
(Access Harvard Secure with your HarvardKey. Try to get a HarvardKey as
soon as possible.)

Motivation: Data and You

The modal social science project starts by importing existing datasets. Datasets
come in all shapes and sizes. As you search for new data you may encounter dozens
of file extensions – csv, xlsx, dta, sav, por, Rdata, Rds, txt, xml, json, shp … the
list continues. Although these files can often be cumbersome, its a good to be able
to find a way to encounter any file that your research may call for.

Reviewing data import will allow us to get on the same page on how computer
systems work.

Where are we? Where are we headed?

Today we’ll cover:

• What’s what in RStudio
• What R is, at a high level
• How to read in data
• Comment on coding style on the way

143

https://rstudio.cloud/learn/primers/
https://getonline.harvard.edu/

Check your understanding

• What is the difference between a file and a folder?
• In the RStudio windows, what is the difference between the “Source” Pane

and the “Console”? What is a “code chunk”?
• How do you read a R help page? What is the Usage section, the Values

section, and the Examples section?
• What use is the “Environment” Pane?
• How would you read in a spreadsheet in R?
• How would you figure out what variables are in the data? size of the data?
• How would you read in a csv file, a dta file, a sav file?

7.1 Orienting

1. We will be using a cloud version of RStudio at https://rstudio.cloud. You
should join the Math Prefresher Space 2019 from the link that was emailed to
you. Each day, click on the project with the day’s date on it.

Although most of you will probably doing your work on RStudio local rather
than cloud, we are trying to use cloud because it makes it easier to standardize
people’s settings.

2. RStudio (either cloud or desktop) is a GUI and an IDE for the programming
language R. A Graphical User Interface allows users to interface with the
software (in this case R) using graphical aids like buttons and tabs. Often we
don’t think of GUIs because to most computer users, everything is a GUI (like
Microsoft Word or your “Control Panel”), but it’s always there! A Integrated
Development Environment just says that the software to interface with R
comes with useful useful bells and whistles to give you shortcuts.

The Console is kind of a the core window through which you see your GUI actually
operating through R. It’s not graphical so might not be as intuitive. But all your
results, commands, errors, warnings.. you see them in here. A console tells you
what’s going on now.

144

https://rstudio.cloud

Figure 7.1: A Typical RStudio Window at Startup

3. via the GUI, you the analyst needs to sends instructions, or commands, to
the R application. The verb for this is “run” or “execute” the command.
Computer programs ask users to provide instructions in very specific formats.
While a English-speaking human can understand a sentence with a few typos
in it by filling in the blanks, the same typo or misplaced character would
halt a computer program. Each program has its own requirements for how
commands should be typed; after all, each of these is its own language. We
refer to the way a program needs its commands to be formatted as its syntax.

4. Theoretically, one could do all their work by typing in commands into the
Console. But that would be a lot of work, because you’d have to give instruc-
tions each time you start your data analysis. Moreover, you’ll have no record
of what you did. That’s why you need a script. This is a type of code. It
can be referred to as a source because that is the source of your commands.
Source is also used as a verb; “source the script” just means execute it. RStu-
dio doesn’t start out with a script, so you can make one from “File > New”
or the New file icon.

145

Figure 7.2: Opening New Script (as opposed to the Console)

4. You can also open scripts that are in folders in your computer. A script is a
type of File. Find your Files in the bottom-right “Files” pane.

To load a dataset, you need to specify where that file is. Computer files
(data, documents, programs) are organized hierarchically, like a branching
tree. Folders can contain files, and also other folders. The GUI toolbar makes
this lineaer and hierarchical relationship apparent. When we turn to locate the
file in our commands, we need another set of syntax. Importantly, denote the
hierarchy of a folder by the / (slash) symbol. data/input/2018-08 indicates
the 2018-08 folder, which is included in the input folder, which is in turn
included in the data folder.

Files (but not folders) have “file extensions” which you are probably familiar
with already: .docx, .pdf, and .pdf. The file extensions you will see in a
stats or quantitative social science class are:

• .pdf: PDF, a convenient format to view documents and slides in, regard-
less of Mac/Windows.

• .csv: A comma separated values file

• .xlsx: Microsoft Excel file

• .dta: Stata data

146

• .sav: SPSS data

• .R: R code (script)

• .Rmd: Rmarkdown code (text + code)

• .do: Stata code (script)

Figure 7.3: Opening an Existing Script from Files

5. In R, there are two main types of scripts. A classic .R file and a .Rmd file
(for Rmarkdown). A .R file is just lines and lines of R code that is meant to
be inserted right into the Console. A .Rmd tries to weave code and English
together, to make it easier for users to create reports that interact with data
and intersperse R code with explanation. For example, we built this book in
Rmds.

The Rmarkdown facilitates is the use of code chunks, which are used here. These
start and end with three back-ticks. In the beginning, we can add options in curly
braces ({}). Specifying r in the beginning tells to render it as R code. Options
like echo = TRUE switch between showing the code that was executed or not; eval
= TRUE switch between evaluating the code. More about Rmarkdown in Section
Chapter 13. For example, this code chunk would evaluate 1 + 1 and show its
output when compiled, but not display the code that was executed.

147

Figure 7.4: A code chunk in Rmarkdown (before rendering)

148

7.2 But what is R?

R is an object oriented programming language primarily used for statistical comput-
ing. An object oriented language is a programming language built around manipu-
lating objects.

• In R, objects can be matrices, vectors, scalars, strings, and data frames, for
example

• Objects contain different types of information
• Different objects have different allowable procedures:

Adding a string and a string does not work because the '+' operator
does not work for strings:

'Harvard' + 'Gov'

The '+' operator can add numbers just fine
9 + 13

[1] 22

Reminder: to figure out the type of an object use:
x <- 9
class(9)

[1] "numeric"

class(x)

[1] "numeric"

class("Harvard")

[1] "character"

Object oriented programming makes languages flexible and powerful:

• You can create custom functions and objects for your needs
• Other people can create great packages for everyone to use

149

• Many errors come from using the wrong data type and a lot of programming
in R is getting data into the right format and type to work with.

It is helpful to think in terms of object manipulation at a high level while program-
ming in R, particularly at the beginning of tackling a new problem. Think about
what objects you want to manipulate, what types they are, and how they fit together.
Once you have the logic of your solution ready then you can write it in R.

7.3 The Computer and You: Giving Instructions

We’ll do the Peanut Butter and Jelly Exercise in class as an introduction to pro-
gramming for those who are new.1

Assignment: Take 5 minutes to write down on a piece of paper, how to make a
peanut butter and jelly sandwich. Be as concise and unambiguous as possible so
that a robot (who doesn’t know what a PBJ is) would understand. You can assume
that there will be loaf of sliced bread, a jar of jelly, a jar of peanut butter, and a
knife.

Simpler assignment: Say we just want a robot to be able to tell us if we have enough
ingredients to make a peanut butter and jelly sandwich. Write down instructions
so that if told how many slices of bread, servings of peanut butter, and servings of
jelly you have, the robot can tell you if you can make a PBJ.

Now, translate the simpler assignment into R code using the code below as a starting
point:

n_bread <- 8
n_pb <- 3
n_jelly <- 9

write instructions in R here

7.4 Base-R vs. tidyverse

One last thing before we jump into data. Many things in R and other open source
packages have competing standards. A lecture on a technique inevitably biases one
standard over another. Right now among R users in this area, there are two families

1This Exercise is taken from Harvard’s Introductory Undergraduate Class, CS50 (https://www.
youtube.com/watch?v=kcbT3hrEi9s), and many other writeups.

150

https://www.youtube.com/watch?v=kcbT3hrEi9s
https://www.youtube.com/watch?v=kcbT3hrEi9s

of functions: base-R and tidyverse. R instructors thus face a dilemma about which
to teach primarily.2

In this prefresher, we try our best to choose the one that is most useful to the modal
task of social science researchers, and make use of the tidyverse functions in most
applications. but feel free to suggest changes to us or to the booklet.

Although you do not need to choose one over the other, for beginners it is confusing
what is a tidyverse function and what is not. Many of the tidyverse packages are
covered in this 2017 graphic below, and the cheat-sheets that other programmers
have written: https://www.rstudio.com/resources/cheatsheets/

Figure 7.5: Names of Packages in the tidyverse Family

The following side-by-side comparison of commands for a particular function com-
pares some tidyverse and non-tidyverse functions (which we refer to loosely as base-
R). This list is not meant to be comprehensive and more to give you a quick rule of
thumb.

Dataframe subsetting

2See for example this community discussion: https://community.rstudio.com/t/base-r-and-the-
tidyverse/2965/17

151

In order to … in tidyverse: in base-R:
Count each category count(df, var) table(df$var)
Filter rows by condition filter(df, var

== "Female")
df[df$var == "Female",] or
subset(df, var == "Female")

Extract columns select(df,
var1, var2)

df[, c("var1", "var2")]

Extract a single column
as a vector

pull(df, var) df[["var"]] or df[, "var"]

Combine rows bind_rows() rbind()
Combine columns bind_cols() cbind()
Create a dataframe tibble(x =

vec1, y =
vec2)

data.frame(x = vec1, y =
vec2)

Turn a dataframe into a
tidyverse dataframe

tbl_df(df)

Remember that tidyverse applies to dataframes only, not vectors. For subsetting
vectors, use the base-R functions with the square brackets.

Read data

Some non-tidyverse functions are not quite “base-R” but have similar relationships
to tidyverse. For these, we recommend using the tidyverse functions as a general
rule due to their common format, simplicity, and scalability.

In order to … in tidyverse: in base-R:
Read a Excel file read_excel() read.xlsx()
Read a csv read_csv() read.csv()
Read a Stata file read_dta() read.dta()
Substitute strings str_replace() gsub()
Return matching strings str_subset() grep(., value = TRUE)
Merge data1 and data2
on variables x1 and x2

left_join(data1,
data2, by =
c("x1", "x2"))

merge(data1, data2, by.x
= "x1", by.y = "x2",
all.x = TRUE)

Visualization

Plotting by ggplot2 (from your tutorials) is also a tidyverse family.

152

In order to … in tidyverse: in base-R:
Make a scatter
plot

ggplot(data, aes(x, y)) +
geom_point()

plot(data$x, data$y)

Make a line
plot

ggplot(data, aes(x, y)) +
geom_line()

plot(data$x, data$y,
type = "l")

Make a
histogram

ggplot(data, aes(x, y)) +
geom_histogram()

hist(data$x, data$y)

Make a barplot See Section Chapter 10 See Section Chapter 10

7.5 A is for Athens

For our first dataset, let’s try reading in a dataset on the Ancient Greek world.
Political Theorists and Political Historians study the domestic systems, international
wars, cultures and writing of this era to understand the first instance of democracy,
the rise and overturning of tyranny, and the legacies of political institutions.

This POLIS dataset was generously provided by Professor Josiah Ober of Stanford
University. This dataset includes information on city states in the Ancient Greek
world, parts of it collected by careful work by historians and archaeologists. It is
part of his recent books on Greece (Ober 2015), “The Rise and Fall of Classical
Greece”3 and Institutions in Ancient Athens (Ober 2010) , “Democracy and Knowl-
edge: Innovation and Learning in Classical Athens.”4

7.5.1 Locating the Data

What files do we have in the data/input folder?

data/input/Nunn_Wantchekon_AER_2011.dta data/input/Nunn_Wantchekon_sample.dta
data/input/acs2015_1percent.csv data/input/gapminder_wide.Rds
data/input/gapminder_wide.tab data/input/german_credit.sav
data/input/justices_court-median.csv data/input/ober_2018.xlsx
data/input/sample_mid.csv data/input/sample_polity.csv
data/input/upshot-siena-polls.csv data/input/usc2010_001percent.Rds
data/input/usc2010_001percent.csv

3Ober, Josiah (2015). The Rise and Fall of Classical Greece. Princeton University Press.
4Ober, Josiah (2010). Democracy and Knowledge: Innovation and Learning in Classical Athens.
Princeton University Press.

153

https://press.princeton.edu/titles/10423.html
https://press.princeton.edu/titles/8742.html
https://press.princeton.edu/titles/8742.html

A typical file format is Microsoft Excel. Although this is not usually the best format
for R because of its highly formatted structure as opposed to plain text (more on
this in Section ??(sec:wysiwyg)), recent packages have made this fairly easy.

7.5.2 Reading in Data

In Rstudio, a good way to start is to use the GUI and the Import tool. Once
you click a file, an option to “Import Dataset” comes up. RStudio picks the right
function for you, and you can copy that code, but it’s important to eventually be
able to write that code yourself.

For the first time using an outside package, you first need to install it.

install.packages("readxl")

After that, you don’t need to install it again. But you do need to load it each
time.

library(readxl)

The package readxl has a website: https://readxl.tidyverse.org/. Other packages
are not as user-friendly, but they have a help page with a table of contents of all
their functions.

help(package = readxl)

From the help page, we see that read_excel() is the function that we want to
use.

Let’s try it.

library(readxl)
ober <- read_excel("data/input/ober_2018.xlsx")

Review: what does the / mean? Why do we need the data term first? Does the
argument need to be in quotes?

154

7.5.3 Inspecting

For almost any dataset, you usually want to do a couple of standard checks first to
understand what you loaded.

ober

A tibble: 1,035 x 10
polis_number Name Latitude Longitude Hellenicity Fame Size Colonies Regime

<dbl> <chr> <dbl> <dbl> <chr> <dbl> <chr> <dbl> <chr>
1 1 Alal~ 42.1 9.51 most Greek 1.12 100-~ 0 <NA>
2 2 Empo~ 42.1 3.11 most barba~ 2.12 25-1~ 0 <NA>
3 3 Mass~ 43.3 5.38 most Greek 4 25-1~ 2 no ev~
4 4 Rhode 42.3 3.17 most Greek 0.87 <NA> 0 <NA>
5 5 Abak~ 38.1 15.1 most barba~ 1 <NA> 0 <NA>
6 6 Adra~ 37.7 14.8 most Greek 1 <NA> 0 <NA>
7 7 Agyr~ 37.7 14.5 most Greek 1.25 <NA> 0 no ev~
8 8 Aitna 38.2 15.6 most Greek 3.25 200-~ 1 no ev~
9 9 Akra~ 37.3 13.6 most Greek 6.37 500 ~ 0 evide~
10 10 Akrai 37.1 14.9 most Greek 1.25 <NA> 0 <NA>
i 1,025 more rows
i 1 more variable: Delian <chr>

dim(ober)

[1] 1035 10

From your tutorials, you also know how to do graphics! Graphics are useful for
grasping your data, but we will cover them more deeply in Chapter Chapter 10.

ggplot(ober, aes(x = Fame)) +
geom_histogram()

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

155

0

100

200

300

400

500

0 5 10 15 20
Fame

co
un

t

What about the distribution of fame by regime?

ggplot(ober, aes(y = Fame, x = Regime, group = Regime)) +
geom_boxplot()

156

0

5

10

15

20

evidence of democracy no evidence of democracy NA
Regime

Fa
m

e

What do the 1’s, 2’s, and 3’s stand for?

7.5.4 Finding observations

These tidyverse commands from the dplyr package are newer and not built-in,
but they are one of the increasingly more popular ways to wrangle data.

• 80 percent of your data wrangling needs might be doable with these basic
dplyr functions: select, mutate, group_by, summarize, and arrange.

• These verbs roughly correspond to the same commands in SQL, another im-
portant language in data science.

• The |> symbol is a pipe. It takes the thing on the left side and pipes it down
to the function on the right side. We could have done count(cen10, race)
as cen10 |> count(race). That means take cen10 and pass it on to the
function count, which will count observations by race and return a collapsed
dataset with the categories in its own variable and their respective counts in
n.

157

7.5.5 Extra: A sneak peak at Ober’s data

Although this is a bit beyond our current stage, it’s hard to resist the temptation
to see what you can do with data like this. For example, you can map it.5

Using the ggmap package

library(ggmap)

First get a map of the Greek world.

greece <- get_map(
location = c(lon = 22.6382849, lat = 39.543287),
zoom = 5,
source = "stamen",
maptype = "toner"

)
ggmap(greece)

5In mid-2018, changes in Google’s services made it no longer possible to render maps on the fly.
Therefore, the map is not currently rendered automatically (but can be rendered once the user
registers their API). Instead, you now need to register with Google. See the change to the package
ggmap.

158

https://github.com/dkahle/ggmap/blob/e55c0b22b0d16a010b4b45dd2fce800ff0ef19b8/NEWS#L6-L12

I chose the specifications for arguments zoom and maptype by looking at the webpage
and Googling some examples.

Ober’s data has the latitude and longitude of each polis. Because the map of Greece
has the same coordinates, we can add the polei on the same map.

gg_ober <- ggmap(greece) +
geom_point(
data = ober,
aes(y = Latitude, x = Longitude),
size = 0.5,
color = "orange"

)

159

gg_ober +
scale_x_continuous(limits = c(10, 35)) +
scale_y_continuous(limits = c(32, 44)) +
theme_void()

Exercises

1

What is the Fame value of Delphoi?

Enter here

2

Find the polis with the top 10 Fame values.

160

Enter here

3

Make a scatterplot with the number of colonies on the x-axis and Fame on the
y-axis.

Enter here

4

Find the correct function to read the following datasets (available in your rstu-
dio.cloud session) into your R window.

• data/input/acs2015_1percent.csv: A one percent sample of the American
Community Survey

• data/input/gapminder_wide.tab: Country-level wealth and health from
Gapminder6

• data/input/gapminder_wide.Rds: A Rds version of the Gapminder (What
is a Rds file? What’s the difference?)

• data/input/Nunn_Wantchekon_sample.dta: A sample from the Afrobarom-
eter survey (which we’ll explore tomorrow). .dta is a Stata format.

• data/input/german_credit.sav: A hypothetical dataset on consumer credit.
.sav is a SPSS format.

Our Recommendations: Look at the packages haven and readr

Enter here, perhaps making a chunk for each file.

5

Read Ober’s codebook and find a variable that you think is interesting. Check the
distribution of that variable in your data, get a couple of statistics, and summarize
it in English.

Enter here

6Formatted and taken from https://doi.org/10.7910/DVN/GJQNEQ

161

https://doi.org/10.7910/DVN/GJQNEQ

6

This is day 1 and we covered a lot of material. Some of you might have found this
completely new; others not so. Please click through this survey before you leave so
we can adjust accordingly on the next few days.

https://harvard.az1.qualtrics.com/jfe/form/SV_8As7Y7C83iBiQzH

162

https://harvard.az1.qualtrics.com/jfe/form/SV_8As7Y7C83iBiQzH

8 Manipulating Vectors and Matrices

Module originally written by Shiro Kuriwaki and Yon Soo Park

Motivation

Nunn and Wantchekon (2011) – “The Slave Trade and the Origins of Mistrust in
Africa”1 – argues that across African countries, the distrust of co-ethnics fueled by
the slave trade has had long-lasting effects on modern day trust in these territories.
They argued that the slave trade created distrust in these societies in part because as
some African groups were employed by European traders to capture their neighbors
and bring them to the slave ships.

Nunn and Wantchekon use a variety of statistical tools to make their case (adding
controls, ordered logit, instrumental variables, falsification tests, causal mecha-
nisms), many of which will be covered in future courses. In this module we will
only touch on their first set of analysis that use Ordinary Least Squares (OLS).
OLS is likely the most common application of linear algebra in the social sciences.
We will cover some linear algebra, matrix manipulation, and vector manipulation
from this data.

Where are we? Where are we headed?

Up till now, you should have covered:

• R basic programming
• Data Import
• Statistical Summaries.

Today we’ll cover

• Matrices & Dataframes in R
• Manipulating variables

1Nunn, Nathan, and Leonard Wantchekon. 2011. “The Slave Trade and the Origins of Mistrust in
Africa.” American Economic Review 101(7): 3221–52.

163

https://dash.harvard.edu/bitstream/handle/1/11986331/nunn-slave-trade.pdf
https://dash.harvard.edu/bitstream/handle/1/11986331/nunn-slave-trade.pdf
https://dash.harvard.edu/bitstream/handle/1/11986331/nunn-slave-trade.pdf

• And other R tips

8.1 Read Data

library(haven)
nunn_full <- read_dta("data/input/Nunn_Wantchekon_AER_2011.dta")

Nunn and Wantchekon’s main dataset has more than 20,000 observations. Each
observation is a respondent from the Afrobarometer survey.

head(nunn_full)

A tibble: 6 x 59
respno ethnicity murdock_name isocode region district townvill location_id
<chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl>

1 BEN0001 fon FON BEN atlnatiq~ KPOMASSE TOKPA-D~ 30
2 BEN0002 fon FON BEN atlnatiq~ KPOMASSE TOKPA-D~ 30
3 BEN0003 fon FON BEN atlnatiq~ OUIDAH 3ARROND 31
4 BEN0004 fon FON BEN atlnatiq~ OUIDAH 3ARROND 31
5 BEN0005 fon FON BEN atlnatiq~ OUIDAH PAHOU 32
6 BEN0006 fon FON BEN atlnatiq~ OUIDAH PAHOU 32
i 51 more variables: trust_relatives <dbl>, trust_neighbors <dbl>,
intra_group_trust <dbl>, inter_group_trust <dbl>,
trust_local_council <dbl>, ln_export_area <dbl>, export_area <dbl>,
export_pop <dbl>, ln_export_pop <dbl>, age <dbl>, age2 <dbl>, male <dbl>,
urban_dum <dbl>, occupation <dbl>, religion <dbl>, living_conditions <dbl>,
education <dbl>, near_dist <dbl>, distsea <dbl>, loc_murdock_name <chr>,
loc_ln_export_area <dbl>, local_council_performance <dbl>, ...

colnames(nunn_full)

[1] "respno" "ethnicity"
[3] "murdock_name" "isocode"
[5] "region" "district"
[7] "townvill" "location_id"
[9] "trust_relatives" "trust_neighbors"
[11] "intra_group_trust" "inter_group_trust"
[13] "trust_local_council" "ln_export_area"

164

[15] "export_area" "export_pop"
[17] "ln_export_pop" "age"
[19] "age2" "male"
[21] "urban_dum" "occupation"
[23] "religion" "living_conditions"
[25] "education" "near_dist"
[27] "distsea" "loc_murdock_name"
[29] "loc_ln_export_area" "local_council_performance"
[31] "council_listen" "corrupt_local_council"
[33] "school_present" "electricity_present"
[35] "piped_water_present" "sewage_present"
[37] "health_clinic_present" "district_ethnic_frac"
[39] "frac_ethnicity_in_district" "townvill_nonethnic_mean_exports"
[41] "district_nonethnic_mean_exports" "region_nonethnic_mean_exports"
[43] "country_nonethnic_mean_exports" "murdock_centr_dist_coast"
[45] "centroid_lat" "centroid_long"
[47] "explorer_contact" "railway_contact"
[49] "dist_Saharan_node" "dist_Saharan_line"
[51] "malaria_ecology" "v30"
[53] "v33" "fishing"
[55] "exports" "ln_exports"
[57] "total_missions_area" "ln_init_pop_density"
[59] "cities_1400_dum"

First, let’s consider a small subset of this dataset.

nunn <- read_dta("data/input/Nunn_Wantchekon_sample.dta")

nunn

A tibble: 10 x 5
trust_neighbors exports ln_exports export_area ln_export_area

<dbl> <dbl> <dbl> <dbl> <dbl>
1 3 0.388 0.328 0.00407 0.00406
2 3 0.631 0.489 0.0971 0.0926
3 3 0.994 0.690 0.0125 0.0124
4 0 183. 5.21 1.82 1.04
5 3 0 0 0 0
6 2 0 0 0 0
7 2 666. 6.50 14.0 2.71
8 0 0.348 0.298 0.00608 0.00606
9 3 0.435 0.361 0.0383 0.0376
10 3 0 0 0 0

165

8.2 data.frame vs. matricies

This is a data.frame object.

class(nunn)

[1] "tbl_df" "tbl" "data.frame"

But it can be also consider a matrix in the linear algebra sense. What are the
dimensions of this matrix?

nrow(nunn)

[1] 10

data.frames and matrices have much overlap in R, but to explicitly treat an object
as a matrix, you’d need to coerce its class. Let’s call this matrix X.

X <- as.matrix(nunn)

What is the difference between a data.frame and a matrix? A data.frame can
have columns that are of different types, whereas — in a matrix — all columns
must be of the same type (usually either “numeric” or “character”).

You can think of data frames maybe as matrices-plus, because a column can take
on characters as well as numbers. As we just saw, this is often useful for real data
analyses.

Another way to think about data frames is that it is a type of list. Try the str()
code below and notice how it is organized in slots. Each slot is a vector. They can
be vectors of numbers or characters.

enter this on your console
str(cen10)

8.3 Handling matricies in R

You can easily transpose a matrix

166

X

trust_neighbors exports ln_exports export_area ln_export_area
[1,] 3 0.3883497 0.3281158 0.004067405 0.004059155
[2,] 3 0.6311236 0.4892691 0.097059444 0.092633367
[3,] 3 0.9941893 0.6902376 0.012524694 0.012446908
[4,] 0 182.5891266 5.2127004 1.824284434 1.038255095
[5,] 3 0.0000000 0.0000000 0.000000000 0.000000000
[6,] 2 0.0000000 0.0000000 0.000000000 0.000000000
[7,] 2 665.9652100 6.5027380 13.975566864 2.706419945
[8,] 0 0.3476418 0.2983562 0.006082553 0.006064130
[9,] 3 0.4349871 0.3611559 0.038332380 0.037615947
[10,] 3 0.0000000 0.0000000 0.000000000 0.000000000

t(X)

[,1] [,2] [,3] [,4] [,5] [,6]
trust_neighbors 3.000000000 3.00000000 3.00000000 0.000000 3 2
exports 0.388349682 0.63112360 0.99418926 182.589127 0 0
ln_exports 0.328115761 0.48926911 0.69023758 5.212700 0 0
export_area 0.004067405 0.09705944 0.01252469 1.824284 0 0
ln_export_area 0.004059155 0.09263337 0.01244691 1.038255 0 0

[,7] [,8] [,9] [,10]
trust_neighbors 2.000000 0.000000000 3.00000000 3
exports 665.965210 0.347641766 0.43498713 0
ln_exports 6.502738 0.298356235 0.36115587 0
export_area 13.975567 0.006082553 0.03833238 0
ln_export_area 2.706420 0.006064130 0.03761595 0

What are the values of all rows in the first column?

X[, 1]

[1] 3 3 3 0 3 2 2 0 3 3

What are all the values of “exports”? (i.e. return the whole “exports” column)

X[, "exports"]

167

[1] 0.3883497 0.6311236 0.9941893 182.5891266 0.0000000 0.0000000
[7] 665.9652100 0.3476418 0.4349871 0.0000000

What is the first observation (i.e. first row)?

X[1,]

trust_neighbors exports ln_exports export_area ln_export_area
3.000000000 0.388349682 0.328115761 0.004067405 0.004059155

What is the value of the first variable of the first observation?

X[1, 1]

trust_neighbors
3

Pause and consider the following problem on your own. What is the following code
doing?

X[X[, "trust_neighbors"] == 0, "export_area"]

[1] 1.824284434 0.006082553

Why does it give the same output as the following?

X[which(X[, "trust_neighbors"] == 0), "export_area"]

[1] 1.824284434 0.006082553

Some more manipulation

X + X

168

trust_neighbors exports ln_exports export_area ln_export_area
[1,] 6 0.7766994 0.6562315 0.008134809 0.00811831
[2,] 6 1.2622472 0.9785382 0.194118887 0.18526673
[3,] 6 1.9883785 1.3804752 0.025049388 0.02489382
[4,] 0 365.1782532 10.4254007 3.648568869 2.07651019
[5,] 6 0.0000000 0.0000000 0.000000000 0.00000000
[6,] 4 0.0000000 0.0000000 0.000000000 0.00000000
[7,] 4 1331.9304199 13.0054760 27.951133728 5.41283989
[8,] 0 0.6952835 0.5967125 0.012165107 0.01212826
[9,] 6 0.8699743 0.7223117 0.076664761 0.07523189
[10,] 6 0.0000000 0.0000000 0.000000000 0.00000000

X - X

trust_neighbors exports ln_exports export_area ln_export_area
[1,] 0 0 0 0 0
[2,] 0 0 0 0 0
[3,] 0 0 0 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0
[6,] 0 0 0 0 0
[7,] 0 0 0 0 0
[8,] 0 0 0 0 0
[9,] 0 0 0 0 0
[10,] 0 0 0 0 0

t(X) %*% X

trust_neighbors exports ln_exports export_area
trust_neighbors 62.000000 1339.276 18.61181 28.40709
exports 1339.276369 476850.298 5283.76294 9640.42990
ln_exports 18.611811 5283.763 70.50077 100.46202
export_area 28.407085 9640.430 100.46202 198.65558
ln_export_area 5.853106 1992.047 23.08189 39.72847

ln_export_area
trust_neighbors 5.853106
exports 1992.046502
ln_exports 23.081893
export_area 39.728468
ln_export_area 8.412887

169

cbind(X, 1:10)

trust_neighbors exports ln_exports export_area ln_export_area
[1,] 3 0.3883497 0.3281158 0.004067405 0.004059155 1
[2,] 3 0.6311236 0.4892691 0.097059444 0.092633367 2
[3,] 3 0.9941893 0.6902376 0.012524694 0.012446908 3
[4,] 0 182.5891266 5.2127004 1.824284434 1.038255095 4
[5,] 3 0.0000000 0.0000000 0.000000000 0.000000000 5
[6,] 2 0.0000000 0.0000000 0.000000000 0.000000000 6
[7,] 2 665.9652100 6.5027380 13.975566864 2.706419945 7
[8,] 0 0.3476418 0.2983562 0.006082553 0.006064130 8
[9,] 3 0.4349871 0.3611559 0.038332380 0.037615947 9
[10,] 3 0.0000000 0.0000000 0.000000000 0.000000000 10

cbind(X, 1)

trust_neighbors exports ln_exports export_area ln_export_area
[1,] 3 0.3883497 0.3281158 0.004067405 0.004059155 1
[2,] 3 0.6311236 0.4892691 0.097059444 0.092633367 1
[3,] 3 0.9941893 0.6902376 0.012524694 0.012446908 1
[4,] 0 182.5891266 5.2127004 1.824284434 1.038255095 1
[5,] 3 0.0000000 0.0000000 0.000000000 0.000000000 1
[6,] 2 0.0000000 0.0000000 0.000000000 0.000000000 1
[7,] 2 665.9652100 6.5027380 13.975566864 2.706419945 1
[8,] 0 0.3476418 0.2983562 0.006082553 0.006064130 1
[9,] 3 0.4349871 0.3611559 0.038332380 0.037615947 1
[10,] 3 0.0000000 0.0000000 0.000000000 0.000000000 1

colnames(X)

[1] "trust_neighbors" "exports" "ln_exports" "export_area"
[5] "ln_export_area"

8.4 Variable Transformations

exports is the total number of slaves that were taken from the individual’s ethnic
group between Africa’s four slave trades between 1400-1900.

What is ln_exports? The article describes this as the natural log of one plus the
exports. This is a transformation of one column by a particular function

170

log(1 + X[, "exports"])

[1] 0.3281158 0.4892691 0.6902376 5.2127003 0.0000000 0.0000000 6.5027379
[8] 0.2983562 0.3611559 0.0000000

Question for you: why add the 1?

Verify that this is the same as X[, "ln_exports"]

8.5 Linear Combinations

In Table 1 we see “OLS Estimates”. These are estimates of OLS coefficients and
standard errors. You do not need to know what these are for now, but it doesn’t
hurt to getting used to seeing them.

A very crude way to describe regression is through linear combinations. The simplest
linear combination is a one-to-one transformation.

171

Take the first number in Table 1, which is -0.00068. Now, multiply this by exports

-0.00068 * X[, "exports"]

[1] -0.0002640778 -0.0004291640 -0.0006760487 -0.1241606061 0.0000000000
[6] 0.0000000000 -0.4528563428 -0.0002363964 -0.0002957912 0.0000000000

Now, just one more step. Make a new matrix with just exports and the value 1

X2 <- cbind(1, X[, "exports"])

name this new column “intercept”

colnames(X2)

NULL

colnames(X2) <- c("intercept", "exports")

What are the dimensions of the matrix X2?

dim(X2)

[1] 10 2

Now consider a new matrix, called B.

B <- matrix(c(1.62, -0.00068))

What are the dimensions of B?

dim(B)

[1] 2 1

What is the product of X2 and B? From the dimensions, can you tell if it will be
conformable?

172

X2 %*% B

[,1]
[1,] 1.619736
[2,] 1.619571
[3,] 1.619324
[4,] 1.495839
[5,] 1.620000
[6,] 1.620000
[7,] 1.167144
[8,] 1.619764
[9,] 1.619704
[10,] 1.620000

What is this multiplication doing in terms of equations?

8.6 Matrix Basics

Let’s take a look at Matrices in the context of R

cen10 <- read_csv("data/input/usc2010_001percent.csv")
head(cen10)

A tibble: 6 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 New York Female 8 White
2 Ohio Male 24 White
3 Nevada Male 37 White
4 Michigan Female 12 White
5 Maryland Female 18 Black/Negro
6 New Hampshire Male 50 White

What is the dimension of this dataframe? What does the number of rows represent?
What does the number of columns represent?

dim(cen10)

[1] 30871 4

173

nrow(cen10)

[1] 30871

ncol(cen10)

[1] 4

What variables does this dataset hold? What kind of information does it have?

colnames(cen10)

[1] "state" "sex" "age" "race"

We can access column vectors, or vectors that contain values of variables by using
the $ sign

head(cen10$state)

[1] "New York" "Ohio" "Nevada" "Michigan"
[5] "Maryland" "New Hampshire"

head(cen10$race)

[1] "White" "White" "White" "White" "Black/Negro"
[6] "White"

We can look at a unique set of variable values by calling the unique function

unique(cen10$state)

[1] "New York" "Ohio" "Nevada"
[4] "Michigan" "Maryland" "New Hampshire"
[7] "Iowa" "Missouri" "New Jersey"
[10] "California" "Texas" "Pennsylvania"
[13] "Washington" "West Virginia" "Idaho"
[16] "North Carolina" "Massachusetts" "Connecticut"

174

[19] "Arkansas" "Indiana" "Wisconsin"
[22] "Maine" "Tennessee" "Minnesota"
[25] "Florida" "Oklahoma" "Montana"
[28] "Georgia" "Arizona" "Colorado"
[31] "Virginia" "Illinois" "Oregon"
[34] "Kentucky" "South Carolina" "Kansas"
[37] "Louisiana" "Alabama" "District of Columbia"
[40] "Mississippi" "Utah" "Delaware"
[43] "Nebraska" "Alaska" "New Mexico"
[46] "South Dakota" "Hawaii" "Vermont"
[49] "Rhode Island" "Wyoming" "North Dakota"

How many different states are represented (this dataset includes DC as a state)?

length(unique(cen10$state))

[1] 51

Matrices are rectangular structures of numbers (they have to be numbers, and they
can’t be characters).

A cross-tab can be considered a matrix:

table(cen10$race, cen10$sex)

Female Male
American Indian or Alaska Native 142 153
Black/Negro 2070 1943
Chinese 192 162
Japanese 51 26
Other Asian or Pacific Islander 587 542
Other race, nec 877 962
Three or more major races 37 51
Two major races 443 426
White 11252 10955

cross_tab <- table(cen10$race, cen10$sex)
dim(cross_tab)

[1] 9 2

175

cross_tab[6, 2]

[1] 962

But a subset of your data – individual values– can be considered a matrix too.

First 20 rows of the entire data
Below two lines of code do the same thing
cen10[1:20,]

A tibble: 20 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 New York Female 8 White
2 Ohio Male 24 White
3 Nevada Male 37 White
4 Michigan Female 12 White
5 Maryland Female 18 Black/Negro
6 New Hampshire Male 50 White
7 Iowa Female 51 White
8 Missouri Female 41 White
9 New Jersey Male 62 White
10 California Male 25 White
11 Texas Female 23 White
12 Pennsylvania Female 66 White
13 California Female 57 White
14 Texas Female 73 Other race, nec
15 California Male 43 White
16 Washington Male 29 White
17 Texas Male 8 White
18 Missouri Male 78 White
19 West Virginia Male 10 White
20 Idaho Female 9 White

cen10 |> slice(1:20)

A tibble: 20 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 New York Female 8 White

176

2 Ohio Male 24 White
3 Nevada Male 37 White
4 Michigan Female 12 White
5 Maryland Female 18 Black/Negro
6 New Hampshire Male 50 White
7 Iowa Female 51 White
8 Missouri Female 41 White
9 New Jersey Male 62 White
10 California Male 25 White
11 Texas Female 23 White
12 Pennsylvania Female 66 White
13 California Female 57 White
14 Texas Female 73 Other race, nec
15 California Male 43 White
16 Washington Male 29 White
17 Texas Male 8 White
18 Missouri Male 78 White
19 West Virginia Male 10 White
20 Idaho Female 9 White

Of the first 20 rows of the entire data, look at values of just race and age
Below two lines of code do the same thing
cen10[1:20, c("race", "age")]

A tibble: 20 x 2
race age
<chr> <dbl>

1 White 8
2 White 24
3 White 37
4 White 12
5 Black/Negro 18
6 White 50
7 White 51
8 White 41
9 White 62
10 White 25
11 White 23
12 White 66
13 White 57
14 Other race, nec 73
15 White 43

177

16 White 29
17 White 8
18 White 78
19 White 10
20 White 9

cen10 |>
slice(1:20) |>
select(race, age)

A tibble: 20 x 2
race age
<chr> <dbl>

1 White 8
2 White 24
3 White 37
4 White 12
5 Black/Negro 18
6 White 50
7 White 51
8 White 41
9 White 62
10 White 25
11 White 23
12 White 66
13 White 57
14 Other race, nec 73
15 White 43
16 White 29
17 White 8
18 White 78
19 White 10
20 White 9

A vector is a special type of matrix with only one column or only one row

One column
cen10[1:10, c("age")]

A tibble: 10 x 1
age

178

<dbl>
1 8
2 24
3 37
4 12
5 18
6 50
7 51
8 41
9 62
10 25

cen10 |>
slice(1:10) |>
select(c("age"))

A tibble: 10 x 1
age

<dbl>
1 8
2 24
3 37
4 12
5 18
6 50
7 51
8 41
9 62
10 25

One row
cen10[2,]

A tibble: 1 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 Ohio Male 24 White

cen10 |> slice(2)

179

A tibble: 1 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 Ohio Male 24 White

What if we want a special subset of the data? For example, what if I only want
the records of individuals in California? What if I just want the age and race of
individuals in California?

subset for CA rows
ca_subset <- cen10[cen10$state == "California",]

ca_subset_tidy <- cen10 |> filter(state == "California")

all_equal(ca_subset, ca_subset_tidy)

Warning: `all_equal()` was deprecated in dplyr 1.1.0.
i Please use `all.equal()` instead.
i And manually order the rows/cols as needed

[1] TRUE

subset for CA rows and select age and race
ca_subset_age_race <- cen10[cen10$state == "California", c("age", "race")]

ca_subset_age_race_tidy <- cen10 |>
filter(state == "California") |>
select(age, race)

all_equal(ca_subset_age_race, ca_subset_age_race_tidy)

[1] TRUE

Some common operators that can be used to filter or to use as a condition. Remem-
ber, you can use the unique function to look at the set of all values a variable holds
in the dataset.

all individuals older than 30 and younger than 70
s1 <- cen10[cen10$age > 30 & cen10$age < 70,]
s2 <- cen10 |> filter(age > 30 & age < 70)
all_equal(s1, s2)

180

[1] TRUE

all individuals in either New York or California
s3 <- cen10[cen10$state == "New York" | cen10$state == "California",]
s4 <- cen10 |> filter(state == "New York" | state == "California")
all_equal(s3, s4)

[1] TRUE

all individuals in any of the following states: California, Ohio, Nevada, Michigan
s5 <- cen10[cen10$state %in% c("California", "Ohio", "Nevada", "Michigan"),]
s6 <- cen10 |> filter(state %in% c("California", "Ohio", "Nevada", "Michigan"))
all_equal(s5, s6)

[1] TRUE

all individuals NOT in any of the following states: California, Ohio, Nevada, Michigan
s7 <- cen10[!(cen10$state %in% c("California", "Ohio", "Nevada", "Michigan")),]
s8 <- cen10 |> filter(!state %in% c("California", "Ohio", "Nevada", "Michigan"))
all_equal(s7, s8)

[1] TRUE

Checkpoint

1

Get the subset of cen10 for non-white individuals (Hint: look at the set of values
for the race variable by using the unique function)

Enter here

2

Get the subset of cen10 for females over the age of 40

181

Enter here

3

Get all the serial numbers for black, male individuals who don’t live in Ohio or
Nevada.

Enter here

Exercises

1

Let
A = [0.6 0.2

0.4 0.8]

Use R to write code that will create the matrix 𝐴, and then consecutively multiply
𝐴 to itself 4 times. What is the value of 𝐴4?

Enter yourself

Note that R notation of matrices is different from the math notation. Simply trying
X^n where X is a matrix will only take the power of each element to n. Instead, this
problem asks you to perform matrix multiplication.

2

Let’s apply what we learned about subsetting or filtering/selecting. Use the
nunn_full dataset you have already loaded

a) First, show all observations (rows) that have a "male" variable higher than
0.5

Enter yourself

b) Next, create a matrix / dataframe with only two columns: "trust_neighbors"
and "age"

182

Enter yourself

c) Lastly, show all values of "trust_neighbors" and "age" for observations
(rows) that have the “male” variable value that is higher than 0.5

Enter yourself

3

Find a way to generate a vector of “column averages” of the matrix X from the
Nunn and Wantchekon data in one line of code. Each entry in the vector should
contain the sample average of the values in the column. So a 100 by 4 matrix should
generate a length-4 matrix.

4

Similarly, generate a vector of “column medians”.

5

Consider the regression that was run to generate Table 1:

form <- "trust_neighbors ~ exports + age + age2 + male + urban_dum + factor(education) + factor(occupation) + factor(religion) + factor(living_conditions) + district_ethnic_frac + frac_ethnicity_in_district + isocode"
lm_1_1 <- lm(as.formula(form), nunn_full)

The below coef function returns a vector of OLS coefficiants
coef(lm_1_1)

(Intercept) exports
1.619913e+00 -6.791360e-04

age age2
8.395936e-03 -5.473436e-05

male urban_dum
4.550246e-02 -1.404551e-01

factor(education)1 factor(education)2
1.709816e-02 -5.224591e-02

factor(education)3 factor(education)4
-1.373770e-01 -1.889619e-01

factor(education)5 factor(education)6

183

-1.893494e-01 -2.400767e-01
factor(education)7 factor(education)8

-2.850748e-01 -1.232085e-01
factor(education)9 factor(occupation)1

-2.406437e-01 6.185655e-02
factor(occupation)2 factor(occupation)3

7.392168e-02 3.356158e-02
factor(occupation)4 factor(occupation)5

7.942048e-03 6.661126e-02
factor(occupation)6 factor(occupation)7

-7.563297e-02 1.699699e-02
factor(occupation)8 factor(occupation)9

-9.428177e-02 -9.981440e-02
factor(occupation)10 factor(occupation)11

-3.307068e-02 -2.300045e-02
factor(occupation)12 factor(occupation)13

-1.564540e-01 -1.441370e-02
factor(occupation)14 factor(occupation)15

-5.566414e-02 -2.343762e-01
factor(occupation)16 factor(occupation)18

-1.306947e-02 -1.729589e-01
factor(occupation)19 factor(occupation)20

-1.770261e-01 -2.457800e-02
factor(occupation)21 factor(occupation)22

-4.936813e-02 -1.068511e-01
factor(occupation)23 factor(occupation)24

-9.712205e-02 1.292371e-02
factor(occupation)25 factor(occupation)995

2.623186e-02 -1.195063e-03
factor(religion)2 factor(religion)3

5.395953e-02 7.887878e-02
factor(religion)4 factor(religion)5

4.749150e-02 4.318455e-02
factor(religion)6 factor(religion)7

-1.787694e-02 -3.616542e-02
factor(religion)10 factor(religion)11

6.015041e-02 2.237845e-01
factor(religion)12 factor(religion)13

2.627086e-01 -6.812813e-02
factor(religion)14 factor(religion)15

4.673681e-02 3.844555e-01
factor(religion)360 factor(religion)361

184

3.656843e-01 3.416413e-01
factor(religion)362 factor(religion)363

8.230393e-01 3.856565e-01
factor(religion)995 factor(living_conditions)2

4.161301e-02 4.395862e-02
factor(living_conditions)3 factor(living_conditions)4

8.627372e-02 1.197428e-01
factor(living_conditions)5 district_ethnic_frac

1.203606e-01 -1.553648e-02
frac_ethnicity_in_district isocodeBWA

1.011222e-01 -4.258953e-01
isocodeGHA isocodeKEN

1.135307e-02 -1.819556e-01
isocodeLSO isocodeMDG

-5.511200e-01 -3.315727e-01
isocodeMLI isocodeMOZ

7.528101e-02 8.223730e-02
isocodeMWI isocodeNAM

3.062497e-01 -1.397541e-01
isocodeNGA isocodeSEN

-2.381525e-01 3.867371e-01
isocodeTZA isocodeUGA

2.079366e-01 -6.443732e-02
isocodeZAF isocodeZMB

-2.179153e-01 -2.172868e-01

First, get a small subset of the nunn_full dataset. This time, sample 20 rows and
select for variables exports, age, age2, male, and urban_dum. To this small subset,
add (bind_cols() in tidyverse or cbind() in base R) a column of 1’s; this represents
the intercept. If you need some guidance, look at how we sampled 10 rows selected
for a different set of variables above in the lecture portion.

Enter here

Next let’s try calculating predicted values of levels of trust in neighbors by multiply-
ing coefficients for the intercept, exports, age, age2, male, and urban_dum to the
actual observed values for those variables in the small subset you’ve just created.

Hint: You can get just selected elements from the vector returned by coef(lm_1_1)

For example, the below code gives you the first 3 elements of the original vector
coef(lm_1_1)[1:3]

185

(Intercept) exports age
1.619913146 -0.000679136 0.008395936

Also, the below code gives you the coefficient elements for intercept and male
coef(lm_1_1)[c("(Intercept)", "male")]

(Intercept) male
1.61991315 0.04550246

186

9 Objects, Functions, Loops

Where are we? Where are we headed?

Up till now, you should have covered:

• R basic programming
• Data Import
• Statistical Summaries
• Visualization

Today we’ll cover

• Objects
• Functions
• Loops

9.1 What is an object?

Now that we have covered some hands-on ways to use graphics, let’s go into some
fundamentals of the R language.

Let’s first set up

library(dplyr)
library(readr)
library(haven)
library(ggplot2)

cen10 <- read_csv("data/input/usc2010_001percent.csv", col_types = cols())

Objects are abstract symbols in which you store data. Here we will create an object
from copy, and assign cen10 to it.

187

copy <- cen10

This looks the same as the original dataset:

copy

A tibble: 30,871 x 4
state sex age race
<chr> <chr> <dbl> <chr>

1 New York Female 8 White
2 Ohio Male 24 White
3 Nevada Male 37 White
4 Michigan Female 12 White
5 Maryland Female 18 Black/Negro
6 New Hampshire Male 50 White
7 Iowa Female 51 White
8 Missouri Female 41 White
9 New Jersey Male 62 White
10 California Male 25 White
i 30,861 more rows

What happens if you do this next?

copy <- ""

It got reassigned:

copy

[1] ""

9.1.1 lists

Lists are one of the most generic and flexible type of object. You can make an empty
list by the function list()

my_list <- list()
my_list

188

list()

And start filling it in. Slots on the list are invoked by double square brackets [[]]

my_list[[1]] <- "contents of the first slot -- this is a string"
my_list[["slot 2"]] <- "contents of slot named slot 2"
my_list

[[1]]
[1] "contents of the first slot -- this is a string"

$`slot 2`
[1] "contents of slot named slot 2"

each slot can be anything. What are we doing here? We are defining the 1st slot of
the list my_list to be a vector c(1, 2, 3, 4, 5)

my_list[[1]] <- c(1, 2, 3, 4, 5)
my_list

[[1]]
[1] 1 2 3 4 5

$`slot 2`
[1] "contents of slot named slot 2"

You can even make nested lists. Let’s say we want the 1st slot of the list to be
another list of three elements.

my_list[[1]][[1]] <- "subitem 1 in slot 1 of my_list"
my_list[[1]][[2]] <- "subitem 1 in slot 2 of my_list"
my_list[[1]][[3]] <- "subitem 1 in slot 3 of my_list"

my_list

[[1]]
[1] "subitem 1 in slot 1 of my_list" "subitem 1 in slot 2 of my_list"
[3] "subitem 1 in slot 3 of my_list" "4"
[5] "5"

$`slot 2`
[1] "contents of slot named slot 2"

189

9.2 Making your own objects

We’ve covered one type of object, which is a list. You saw it was quite flexible. How
many types of objects are there?

There are an infinite number of objects, because people make their own class of
object. You can detect the type of the object (the class) by the function class

Object can be said to be an instance of a class.

Analogies:

class - Pokemon, object - Pikachu

class - Book, object - To Kill a Mockingbird

class - DataFrame, object - 2010 census data

class - Character, object - “Programming is Fun”

What is type (class) of object is cen10?

class(cen10)

[1] "spec_tbl_df" "tbl_df" "tbl" "data.frame"

What about this text?

class("some random text")

[1] "character"

To change or create the class of any object, you can assign it. To do this, assign the
name of your class to character to an object’s class().

We can start from a simple list. For example, say we wanted to store data about
pokemon. Because there is no pre-made package for this, we decide to make our
own class.

pikachu <- list(
name = "Pikachu",
number = 25,
type = "Electric",
color = "Yellow"

)

190

and we can give it any class name we want.

class(pikachu) <- "Pokemon"
str(pikachu)

List of 4
$ name : chr "Pikachu"
$ number: num 25
$ type : chr "Electric"
$ color : chr "Yellow"
- attr(*, "class")= chr "Pokemon"

pikachu$type

[1] "Electric"

9.2.1 Seeing R through objects

Most of the R objects that you will see as you advance are their own objects. For
example, here’s a linear regression object (which you will learn more about in Gov
2000):

ols <- lm(mpg ~ wt + vs + gear + carb, mtcars)
class(ols)

[1] "lm"

Anything can be an object! Even graphs (in ggplot) can be assigned, re-assigned,
and edited.

grp_race <- group_by(cen10, race) |>
summarize(count = n())

grp_race_ordered <- arrange(grp_race, count) |>
mutate(race = forcats::as_factor(race))

gg_tab <- ggplot(data = grp_race_ordered) +
aes(x = race, y = count) +
geom_col() +

191

labs(caption = "Source: U.S. Census 2010")

gg_tab

0

5000

10000

15000

20000

JapaneseThree or more major racesAmerican Indian or Alaska NativeChineseTwo major racesOther Asian or Pacific IslanderOther race, necBlack/NegroWhite
race

co
un

t

Source: U.S. Census 2010

You can change the orientation

gg_tab <- gg_tab + coord_flip()

9.2.2 Parsing an object by str()s

It can be hard to understand an R object because it’s contents are unknown. The
function str, short for structure, is a quick way to look into the innards of an
object

str(my_list)

List of 2
$: chr [1:5] "subitem 1 in slot 1 of my_list" "subitem 1 in slot 2 of my_list" "subitem 1 in slot 3 of my_list" "4" ...
$ slot 2: chr "contents of slot named slot 2"

192

class(my_list)

[1] "list"

Same for the object we just made

str(pikachu)

List of 4
$ name : chr "Pikachu"
$ number: num 25
$ type : chr "Electric"
$ color : chr "Yellow"
- attr(*, "class")= chr "Pokemon"

What does a ggplot object look like? Very complicated, but at least you can see
it:

enter this on your console
str(gg_tab)

9.3 Types of variables

In the social science we often analyze variables. As you saw in the tutorial, different
types of variables require different care.

A key link with what we just learned is that variables are also types of R objects.

9.3.1 scalars

One number. How many people did we count in our Census sample?

nrow(cen10)

[1] 30871

Question: What proportion of our census sample is Native American? This number
is also a scalar

193

Enter yourself
unique(cen10$race)

[1] "White" "Black/Negro"
[3] "Other race, nec" "American Indian or Alaska Native"
[5] "Chinese" "Other Asian or Pacific Islander"
[7] "Two major races" "Three or more major races"
[9] "Japanese"

mean(cen10$race == "American Indian or Alaska Native")

[1] 0.009555894

Hint: you can use the function mean() to calcualte the sample mean. The sample
proportion is the mean of a sequence of number, where your event of interest is a 1
(or TRUE) and others are 0 (or FALSE).

9.3.2 numeric vectors

A sequence of numbers.

grp_race_ordered$count

[1] 77 88 295 354 869 1129 1839 4013 22207

class(grp_race_ordered$count)

[1] "integer"

Or even, all the ages of the millions of people in our Census. Here are just the first
few numbers of the list.

head(cen10$age)

[1] 8 24 37 12 18 50

194

9.3.3 characters (aka strings)

This can be just one stretch of characters

my_name <- "Meg"
my_name

[1] "Meg"

class(my_name)

[1] "character"

or more characters. Notice here that there’s a difference between a vector of indi-
vidual characters and a length-one object of characters.

my_name_letters <- c("M", "e", "g")
my_name_letters

[1] "M" "e" "g"

class(my_name_letters)

[1] "character"

Finally, remember that lower vs. upper case matters in R!

my_name2 <- "shiro"
my_name == my_name2

[1] FALSE

195

9.4 What is a function?

Most of what we do in R is executing a function. read_csv(), nrow(), ggplot()
.. pretty much anything with a parentheses is a function. And even things like <-
and [are functions as well.

A function is a set of instructions with specified ingredients. It takes an input,
then manipulates it – changes it in some way – and then returns the manipulated
product.

One way to see what a function actually does is to enter it without parentheses.

enter this on your console
table

You’ll see below that the most basic functions are quite complicated internally.

You’ll notice that functions contain other functions. wrapper functions are functions
that “wrap around” existing functions. This sounds redundant, but it’s an important
feature of programming. If you find yourself repeating a command more than two
times, you should make your own function, rather than writing the same type of
code.

9.4.1 Write your own function

It’s worth remembering the basic structure of a function. You create a new function,
call it my_fun by this:

my_fun <- function() {

}

If we wanted to generate a function that computed the number of men in your data,
what would that look like?

count_men <- function(data) {
nmen <- sum(data$sex == "Male")

return(nmen)
}

Then all we need to do is feed this function a dataset

196

count_men(cen10)

[1] 15220

The point of a function is that you can use it again and again without typing up the
set of constituent manipulations. So, what if we wanted to figure out the number
of men in California?

count_men(cen10[cen10$state == "California",])

[1] 1876

Let’s go one step further. What if we want to know the proportion of non-whites in
a state, just by entering the name of the state? There’s multiple ways to do it, but
it could look something like this

nw_in_state <- function(data, state) {
s.subset <- data[data$state == state,]
total.s <- nrow(s.subset)
nw.s <- sum(s.subset$race != "White")

nw.s / total.s
}

The last line is what gets generated from the function. To be more explicit you can
wrap the last line around return(). (as in return(nw.s/total.s). return() is
used when you want to break out of a function in the middle of it and not wait till
the last line.

Try it on your favorite state!

nw_in_state(cen10, "Massachusetts")

[1] 0.2040185

197

Checkpoint

1

Try making your own function, average_age_in_state, that will give you the av-
erage age of people in a given state.

Enter on your own

2

Try making your own function, asians_in_state, that will give you the number
of Chinese, Japanese, and Other Asian or Pacific Islander people in a given
state.

Enter on your own

3

Try making your own function, ‘top_10_oldest_cities’, that will give you the names
of cities whose population’s average age is top 10 oldest.

Enter on your own

9.5 What is a package?

You can think of a package as a suite of functions that other people have already
built for you to make your life easier.

help(package = "ggplot2")

To use a package, you need to do two things: (1) install it, and then (2) load it.

Installing is a one-time thing

install.packages("ggplot2")

But you need to load each time you start a R instance. So always keep these
commands on a script.

198

library(ggplot2)

In rstudio.cloud, we already installed a set of packages for you. But when you
start your own R instance, you need to have installed the package at some point.

9.6 Conditionals

Sometimes, you want to execute a command only under certain conditions. This is
done through the almost universal function, if(). Inside the if function we enter a
logical statement. The line that is adjacent to, or follows, the if() statement only
gets executed if the statement returns TRUE.

For example,

For example,

x <- 5
if (x > 0) {

print("positive number")
} else if (x == 0) {

print("zero")
} else {

print("negative number")
}

[1] "positive number"

You can wrap that whole things in a function

is_positive <- function(number) {
if (number > 0) {
print("positive number")

} else if (number == 0) {
print("zero")

} else {
print("negative number")

}
}

is_positive(5)

199

[1] "positive number"

is_positive(-3)

[1] "negative number"

9.7 For-loops

Loops repeat the same statement, although the statement can be “the same” only
in an abstract sense. Use the for(x in X) syntax to repeat the subsequent com-
mand as many times as there are elements in the right-hand object X. Each of these
elements will be referred to the left-hand index x

First, come up with a vector.

fruits <- c("apples", "oranges", "grapes")

Now we use the fruits vector in a for loop.

for (fruit in fruits) {
print(paste("I love", fruit))

}

[1] "I love apples"
[1] "I love oranges"
[1] "I love grapes"

Here for() and in must be part of any for loop. The right hand side fruits must
be a thing that exists. Finally the left-hand side object is “Pick your favor name.”
It is analogous to how we can index a sum with any letter. ∑10

𝑖=1 𝑖 and sum_{j =
1}^{10}j are in fact the same thing.

for (i in 1:length(fruits)) {
print(paste("I love", fruits[i]))

}

[1] "I love apples"
[1] "I love oranges"
[1] "I love grapes"

200

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")

for (state in states_of_interest) {
state_data <- cen10[cen10$state == state,]
nmen <- sum(state_data$sex == "Male")

n <- nrow(state_data)
men_perc <- round(100 * (nmen / n), digits = 2)
print(paste("Percentage of men in", state, "is", men_perc))

}

[1] "Percentage of men in California is 49.85"
[1] "Percentage of men in Massachusetts is 47.6"
[1] "Percentage of men in New Hampshire is 48.55"
[1] "Percentage of men in Washington is 48.19"

Instead of printing, you can store the information in a vector

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")
male_percentages <- c()
iter <- 1

for (state in states_of_interest) {
state_data <- cen10[cen10$state == state,]
nmen <- sum(state_data$sex == "Male")
n <- nrow(state_data)
men_perc <- round(100 * (nmen / n), digits = 2)

male_percentages <- c(male_percentages, men_perc)
names(male_percentages)[iter] <- state
iter <- iter + 1

}

male_percentages

California Massachusetts New Hampshire Washington
49.85 47.60 48.55 48.19

201

9.8 Nested Loops

What if I want to calculate the population percentage of a race group for all race
groups in states of interest? You could probably use tidyverse functions to do this,
but let’s try using loops!

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")
for (state in states_of_interest) {

for (race in unique(cen10$race)) {
race_state_num <- nrow(cen10[cen10$race == race & cen10$state == state,])
state_pop <- nrow(cen10[cen10$state == state,])
race_perc <- round(100 * (race_state_num / (state_pop)), digits = 2)
print(paste("Percentage of ", race, "in", state, "is", race_perc))

}
}

[1] "Percentage of White in California is 57.61"
[1] "Percentage of Black/Negro in California is 6.72"
[1] "Percentage of Other race, nec in California is 15.55"
[1] "Percentage of American Indian or Alaska Native in California is 1.12"
[1] "Percentage of Chinese in California is 3.75"
[1] "Percentage of Other Asian or Pacific Islander in California is 9.54"
[1] "Percentage of Two major races in California is 4.62"
[1] "Percentage of Three or more major races in California is 0.37"
[1] "Percentage of Japanese in California is 0.72"
[1] "Percentage of White in Massachusetts is 79.6"
[1] "Percentage of Black/Negro in Massachusetts is 5.87"
[1] "Percentage of Other race, nec in Massachusetts is 4.02"
[1] "Percentage of American Indian or Alaska Native in Massachusetts is 0.77"
[1] "Percentage of Chinese in Massachusetts is 2.32"
[1] "Percentage of Other Asian or Pacific Islander in Massachusetts is 4.33"
[1] "Percentage of Two major races in Massachusetts is 2.78"
[1] "Percentage of Three or more major races in Massachusetts is 0"
[1] "Percentage of Japanese in Massachusetts is 0.31"
[1] "Percentage of White in New Hampshire is 93.48"
[1] "Percentage of Black/Negro in New Hampshire is 0.72"
[1] "Percentage of Other race, nec in New Hampshire is 0.72"
[1] "Percentage of American Indian or Alaska Native in New Hampshire is 0.72"
[1] "Percentage of Chinese in New Hampshire is 0.72"
[1] "Percentage of Other Asian or Pacific Islander in New Hampshire is 2.17"
[1] "Percentage of Two major races in New Hampshire is 0.72"
[1] "Percentage of Three or more major races in New Hampshire is 0"

202

[1] "Percentage of Japanese in New Hampshire is 0.72"
[1] "Percentage of White in Washington is 76.05"
[1] "Percentage of Black/Negro in Washington is 2.9"
[1] "Percentage of Other race, nec in Washington is 5.37"
[1] "Percentage of American Indian or Alaska Native in Washington is 2.03"
[1] "Percentage of Chinese in Washington is 1.31"
[1] "Percentage of Other Asian or Pacific Islander in Washington is 6.68"
[1] "Percentage of Two major races in Washington is 4.79"
[1] "Percentage of Three or more major races in Washington is 0.29"
[1] "Percentage of Japanese in Washington is 0.58"

Exercises

Exercise 1: Write your own function

Write your own function that makes some task of data analysis simpler. Ideally, it
would be a function that helps you do either of the previous tasks in fewer lines of
code. You can use the three lines of code that was provided in exercise 1 to wrap
that into another function too!

Enter yourself

Exercise 2: Using Loops

Using a loop, create a crosstab of sex and race for each state in the set
“states_of_interest”

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")
Enter yourself

Exercise 3: Storing information derived within loops in a global
dataframe

Recall the following nested loop

203

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")
for (state in states_of_interest) {

for (race in unique(cen10$race)) {
race_state_num <- nrow(cen10[cen10$race == race & cen10$state == state,])
state_pop <- nrow(cen10[cen10$state == state,])
race_perc <- round(100 * (race_state_num / (state_pop)), digits = 2)
print(paste("Percentage of ", race, "in", state, "is", race_perc))

}
}

[1] "Percentage of White in California is 57.61"
[1] "Percentage of Black/Negro in California is 6.72"
[1] "Percentage of Other race, nec in California is 15.55"
[1] "Percentage of American Indian or Alaska Native in California is 1.12"
[1] "Percentage of Chinese in California is 3.75"
[1] "Percentage of Other Asian or Pacific Islander in California is 9.54"
[1] "Percentage of Two major races in California is 4.62"
[1] "Percentage of Three or more major races in California is 0.37"
[1] "Percentage of Japanese in California is 0.72"
[1] "Percentage of White in Massachusetts is 79.6"
[1] "Percentage of Black/Negro in Massachusetts is 5.87"
[1] "Percentage of Other race, nec in Massachusetts is 4.02"
[1] "Percentage of American Indian or Alaska Native in Massachusetts is 0.77"
[1] "Percentage of Chinese in Massachusetts is 2.32"
[1] "Percentage of Other Asian or Pacific Islander in Massachusetts is 4.33"
[1] "Percentage of Two major races in Massachusetts is 2.78"
[1] "Percentage of Three or more major races in Massachusetts is 0"
[1] "Percentage of Japanese in Massachusetts is 0.31"
[1] "Percentage of White in New Hampshire is 93.48"
[1] "Percentage of Black/Negro in New Hampshire is 0.72"
[1] "Percentage of Other race, nec in New Hampshire is 0.72"
[1] "Percentage of American Indian or Alaska Native in New Hampshire is 0.72"
[1] "Percentage of Chinese in New Hampshire is 0.72"
[1] "Percentage of Other Asian or Pacific Islander in New Hampshire is 2.17"
[1] "Percentage of Two major races in New Hampshire is 0.72"
[1] "Percentage of Three or more major races in New Hampshire is 0"
[1] "Percentage of Japanese in New Hampshire is 0.72"
[1] "Percentage of White in Washington is 76.05"
[1] "Percentage of Black/Negro in Washington is 2.9"
[1] "Percentage of Other race, nec in Washington is 5.37"
[1] "Percentage of American Indian or Alaska Native in Washington is 2.03"
[1] "Percentage of Chinese in Washington is 1.31"

204

[1] "Percentage of Other Asian or Pacific Islander in Washington is 6.68"
[1] "Percentage of Two major races in Washington is 4.79"
[1] "Percentage of Three or more major races in Washington is 0.29"
[1] "Percentage of Japanese in Washington is 0.58"

Instead of printing the percentage of each race in each state, create a dataframe, and
store all that information in that dataframe. (Hint: look at how I stored information
about male percentage in each state of interest in a vector.)

205

10 Visualization

Module originally written by Shiro Kuriwaki.

Motivation: The Law of the Census

In this module, let’s visualize some cross-sectional stats with an actual Census. Then,
we’ll do an example on time trends with Supreme Court ideal points.

Why care about the Census? The Census is one of the fundamental acts of a govern-
ment. See the Law Review article by Persily (2011), “The Law of the Census.”1 The
Census is government’s primary tool for apportionment (allocating seats to districts),
appropriations (allocating federal funding), and tracking demographic change. See
for example Hochschild and Powell (2008) on how the categorizations of race in the
Census during 1850-1930.2 Notice also that both of these pieces are not inherently
“quantitative” — the Persily article is a Law Review and the Hochschild and Pow-
ell article is on American Historical Development — but data analysis would be
certainly relevant.

Time series data is a common form of data in social science data, and there is
growing methodological work on making causal inferences with time series.3 We
will use the the ideological estimates of the Supreme court.

Where are we? Where are we headed?

Up till now, you should have covered:

• The R Visualization and Programming primers at https://rstudio.cloud/
primers/

1Persily, Nathaniel. 2011. “The Law of the Census: How to Count, What to Count, Whom to
Count, and Where to Count Them.”. Cardozo Law Review 32(3): 755–91.

2Hochschild, Jennifer L., and Brenna Marea Powell. 2008. “Racial Reorganization and the United
States Census 1850–1930: Mulattoes, Half-Breeds, Mixed Parentage, Hindoos, and the Mexican
Race.”. Studies in American Political Development 22(1): 59–96.

3Blackwell, Matthew, and Adam Glynn. 2018. “How to Make Causal Inferences with Time-Series
Cross-Sectional Data under Selection on Observables.” American Political Science Review

206

http://cardozolawreview.com/Joomla1.5/content/32-3/Persily.32-3.pdf
https://dash.harvard.edu/bitstream/handle/1/3153295/hoschschild_racialreorganization.pdf?sequence=2
https://rstudio.cloud/primers/
https://rstudio.cloud/primers/
http://cardozolawreview.com/Joomla1.5/content/32-3/Persily.32-3.pdf
http://cardozolawreview.com/Joomla1.5/content/32-3/Persily.32-3.pdf
https://dash.harvard.edu/bitstream/handle/1/3153295/hoschschild_racialreorganization.pdf?sequence=2
https://dash.harvard.edu/bitstream/handle/1/3153295/hoschschild_racialreorganization.pdf?sequence=2
https://dash.harvard.edu/bitstream/handle/1/3153295/hoschschild_racialreorganization.pdf?sequence=2
https://doi.org/10.1017/S0003055418000357
https://doi.org/10.1017/S0003055418000357

• Reading and handling data
• Matrices and Vectors

– What does : mean in R? What about ==? ,?, != , &, |, %in%
– What does |> do?

Today we’ll cover:

• Visualization
• A bit of data wrangling

Check your understanding

• How do you make a barplot, in base-R and in ggplot?
• How do you add layers to a ggplot?
• How do you change the axes of a ggplot?
• How do you make a histogram?
• How do you make a graph that looks like this?

Figure 10.1: By Randy Schutt - Own work, CC BY-SA 3.0, Wikimedia.

10.1 Read data

First, the census. Read in a subset of the 2010 Census that we looked at earlier.
This time, it is in Rds form.

cen10 <- readRDS("data/input/usc2010_001percent.Rds")

The data comes from IPUMS4, a great source to extract and analyze Census and
Census-conducted survey (ACS, CPS) data.
4Ruggles, Steven, Katie Genadek, Ronald Goeken, Josiah Grover, and Matthew Sobek. 2015.
Integrated Public Use Microdata Series: Version 6.0 dataset

207

https://commons.wikimedia.org/w/index.php?curid=29585342
http://doi.org/10.18128/D010.V6.0
http://doi.org/10.18128/D010.V6.0

10.2 Counting

How many people are in your sample?

nrow(cen10)

[1] 30871

This and all subsequent tasks involve manipulating and summarizing data, some-
times called “wrangling”. As per last time, there are both “base-R” and “tidyverse”
approaches.

We have already seen several functions from the tidyverse:

• select selects columns
• filter selects rows based on a logical (boolean) statement
• slice selects rows based on the row number
• arrange reordered the rows in descending order.

In this visualization section, we’ll make use of the pair of functions group_by() and
summarize().

10.3 Tabulating

Summarizing data is the key part of communication; good data viz gets the point
across.5 Summaries of data come in two forms: tables and figures.

Here are two ways to count by group, or to tabulate.

In base-R Use the table function, that provides how many rows exist for an unique
value of the vector (remember unique from yesterday?)

table(cen10$race)

American Indian or Alaska Native Black/Negro
295 4013

Chinese Japanese
354 77

5Kastellec, Jonathan P., and Eduardo L. Leoni. 2007. “Using Graphs Instead of Tables in Political
Science.”. Perspectives on Politics 5 (4): 755–71.

208

http://www.princeton.edu/~jkastell/Tables2Graphs/graphs.pdf
http://www.princeton.edu/~jkastell/Tables2Graphs/graphs.pdf

Other Asian or Pacific Islander Other race, nec
1129 1839

Three or more major races Two major races
88 869

White
22207

With tidyverse, a quick convenience function is count, with the variable to count
on included.

count(cen10, race)

A tibble: 9 x 2
race n
<chr> <int>

1 American Indian or Alaska Native 295
2 Black/Negro 4013
3 Chinese 354
4 Japanese 77
5 Other Asian or Pacific Islander 1129
6 Other race, nec 1839
7 Three or more major races 88
8 Two major races 869
9 White 22207

We can check out the arguments of count and see that there is a sort option. What
does this do?

count(cen10, race, sort = TRUE)

A tibble: 9 x 2
race n
<chr> <int>

1 White 22207
2 Black/Negro 4013
3 Other race, nec 1839
4 Other Asian or Pacific Islander 1129
5 Two major races 869
6 Chinese 354
7 American Indian or Alaska Native 295
8 Three or more major races 88
9 Japanese 77

209

count is a kind of shorthand for group_by() and summarize. This code would have
done the same.

cen10 |>
group_by(race) |>
summarize(n = n())

A tibble: 9 x 2
race n
<chr> <int>

1 American Indian or Alaska Native 295
2 Black/Negro 4013
3 Chinese 354
4 Japanese 77
5 Other Asian or Pacific Islander 1129
6 Other race, nec 1839
7 Three or more major races 88
8 Two major races 869
9 White 22207

If you are new to tidyverse, what would you think each row did? Reading the
function help page, verify if your intuition was correct.

where n() is a function that counts rows.

10.4 base R graphics and ggplot

Two prevalent ways of making graphing are referred to as “base-R” and “ggplot”.

10.4.1 base R

“Base-R” graphics are graphics that are made with R’s default graphics commands.
First, let’s assign our tabulation to an object, then put it in the barplot() func-
tion.

barplot(table(cen10$race))

210

American Indian or Alaska Native Other race, nec White

0
10

00
0

20
00

0

10.4.2 ggplot

A popular alternative a ggplot graphics, that you were introduced to in the tutorial.
gg stands for grammar of graphics by Hadley Wickham, and it has a new semantics
of explaining graphics in R. Again, first let’s set up the data.

Although the tutorial covered making scatter plots as the first cut, often data re-
quires summaries before they made into graphs.

For this example, let’s group and count first like we just did. But assign it to a new
object.

grp_race <- count(cen10, race)

We will now plot this grouped set of numbers. Recall that the ggplot() function
takes two main arguments, data and aes.

1. First enter a single dataframe from which you will draw a plot.
2. Then enter the aes, or aesthetics. This defines which variable in the data

the plotting functions should take for pre-set dimensions in graphics. The
dimensions x and y are the most important. We will assign race and count
to them, respectively,

211

3. After you close ggplot() .. add layers by the plus sign. A geom is a layer
of graphical representation, for example geom_histogram renders a histogram,
geom_point renders a scatter plot. For a barplot, we can use geom_col()

What is the right geometry layer to make a barplot? Turns out:

ggplot(data = grp_race, aes(x = race, y = n)) +
geom_col()

0

5000

10000

15000

20000

American Indian or Alaska NativeBlack/NegroChineseJapaneseOther Asian or Pacific IslanderOther race, necThree or more major racesTwo major racesWhite
race

n

10.5 Improving your graphics

Adjusting your graphics to make the point clear is an important skill. Here is a
base-R example of showing the same numbers but with a different design, in a way
that aims to maximize the “data-to-ink ratio”.

par(oma = c(1, 11, 1, 1))
barplot(sort(table(cen10$race)), # sort numbers

horiz = TRUE, # flip
border = NA, # border is extraneous
xlab = "Number in Race Category",
bty = "n", # no box

212

las = 1
) # alignment of axis labels is horizontal

Japanese

American Indian or Alaska Native

Two major races

Other race, nec

White

Number in Race Category

0 5000 15000

Notice that we applied the sort() function to order the bars in terms of their counts.
The default ordering of a categorical variable / factor is alphabetical. Alphabetical
ordering is uninformative and almost never the way you should order variables.

In ggplot you might do this by:

library(forcats)

grp_race_ordered <- arrange(grp_race, n) |>
mutate(race = as_factor(race))

ggplot(data = grp_race_ordered, aes(x = race, y = n)) +
geom_col() +
coord_flip() +
labs(
y = "Number in Race Category",
x = "",
caption = "Source: 2010 U.S. Census sample"

)

213

Japanese

Three or more major races

American Indian or Alaska Native

Chinese

Two major races

Other Asian or Pacific Islander

Other race, nec

Black/Negro

White

0 5000 10000 15000 20000
Number in Race Category

Source: 2010 U.S. Census sample

The data ink ratio was popularized by Ed Tufte (originally a political economy
scholar who has recently become well known for his data visualization work). See
Tufte (2001), The Visual Display of Quantitative Information and his website https:
//www.edwardtufte.com/tufte/. For a R and ggplot focused example using social
science examples, check out Healy (2018), Data Visualization: A Practical Introduc-
tion with a draft at https://socviz.co/6. There are a growing number of excellent
books on data visualization.

10.6 Cross-tabs

Visualizations and Tables each have their strengths. A rule of thumb is that more
than a dozen numbers on a table is too much to digest, but less than a dozen is too
few for a figure to be worth it. Let’s look at a table first.

A cross-tab is counting with two types of variables, and is a simple and powerful
tool to show the relationship between multiple variables.

xtab_race_state <- table(cen10$state, cen10$race)
xtab_race_state

6Healy, Kieran. forthcoming. Data Visualization: A Practical Introduction. Princeton University
Press

214

https://www.edwardtufte.com/tufte/
https://www.edwardtufte.com/tufte/
https://socviz.co/

American Indian or Alaska Native Black/Negro Chinese
Alabama 2 128 1
Alaska 11 6 0
Arizona 28 23 1
Arkansas 1 45 0
California 42 253 141
Colorado 7 26 3
Connecticut 1 39 7
Delaware 3 28 1
District of Columbia 0 35 0
Florida 9 304 4
Georgia 2 304 5
Hawaii 0 0 2
Idaho 2 0 0
Illinois 5 194 6
Indiana 2 66 3
Iowa 0 9 1
Kansas 2 24 2
Kentucky 2 35 2
Louisiana 3 161 1
Maine 0 4 1
Maryland 2 177 4
Massachusetts 5 38 15
Michigan 5 147 8
Minnesota 6 25 5
Mississippi 1 116 0
Missouri 4 74 2
Montana 8 0 0
Nebraska 2 11 0
Nevada 6 15 6
New Hampshire 1 1 1
New Jersey 0 130 19
New Mexico 21 3 1
New York 13 305 55
North Carolina 12 220 4
North Dakota 4 1 0
Ohio 1 122 5
Oklahoma 21 20 0
Oregon 5 5 4
Pennsylvania 2 156 10
Rhode Island 2 3 0

215

South Carolina 2 120 1
South Dakota 7 1 0
Tennessee 0 97 0
Texas 14 316 15
Utah 8 0 1
Vermont 0 2 0
Virginia 0 171 8
Washington 14 20 9
West Virginia 0 5 0
Wisconsin 6 27 0
Wyoming 1 1 0

Japanese Other Asian or Pacific Islander Other race, nec
Alabama 0 3 8
Alaska 0 5 2
Arizona 0 12 74
Arkansas 0 1 11
California 27 359 585
Colorado 0 10 28
Connecticut 0 16 20
Delaware 0 4 5
District of Columbia 0 1 1
Florida 1 24 72
Georgia 0 35 35
Hawaii 16 35 0
Idaho 1 0 8
Illinois 3 53 75
Indiana 0 8 20
Iowa 0 4 10
Kansas 0 8 6
Kentucky 0 4 5
Louisiana 0 5 7
Maine 0 1 0
Maryland 1 12 28
Massachusetts 2 28 26
Michigan 1 23 8
Minnesota 1 28 13
Mississippi 0 3 2
Missouri 0 9 6
Montana 0 0 1
Nebraska 0 5 6
Nevada 2 15 41

216

New Hampshire 1 3 1
New Jersey 2 65 69
New Mexico 1 1 23
New York 3 68 154
North Carolina 1 12 40
North Dakota 0 0 0
Ohio 2 17 7
Oklahoma 0 5 15
Oregon 0 11 21
Pennsylvania 1 28 30
Rhode Island 0 4 6
South Carolina 0 4 6
South Dakota 1 1 2
Tennessee 0 13 13
Texas 2 92 253
Utah 1 6 14
Vermont 0 0 1
Virginia 2 29 29
Washington 4 46 37
West Virginia 0 0 0
Wisconsin 1 11 13
Wyoming 0 2 2

Three or more major races Two major races White
Alabama 1 8 344
Alaska 0 15 37
Arizona 2 11 485
Arkansas 1 2 247
California 14 174 2168
Colorado 1 22 401
Connecticut 1 7 284
Delaware 1 1 66
District of Columbia 0 2 21
Florida 2 42 1435
Georgia 1 21 587
Hawaii 14 27 39
Idaho 1 6 129
Illinois 2 35 856
Indiana 1 6 514
Iowa 0 8 287
Kansas 0 8 237
Kentucky 1 9 357

217

Louisiana 0 6 273
Maine 0 1 117
Maryland 1 13 302
Massachusetts 0 18 515
Michigan 2 23 792
Minnesota 1 10 483
Mississippi 2 1 167
Missouri 2 14 516
Montana 0 0 88
Nebraska 0 5 155
Nevada 1 16 171
New Hampshire 0 1 129
New Jersey 3 25 589
New Mexico 1 6 146
New York 8 51 1220
North Carolina 2 20 648
North Dakota 0 1 46
Ohio 3 20 931
Oklahoma 3 24 266
Oregon 4 9 279
Pennsylvania 1 27 1045
Rhode Island 1 4 74
South Carolina 1 6 325
South Dakota 0 2 72
Tennessee 0 9 474
Texas 2 71 1792
Utah 0 8 255
Vermont 0 4 59
Virginia 4 24 548
Washington 2 33 524
West Virginia 0 3 168
Wisconsin 1 8 497
Wyoming 0 2 47

Another function to make a cross-tab is the xtabs command, which uses formula
notation.

xtabs(~ state + race, cen10)

What if we care about proportions within states, rather than counts? Say we’d
like to compare the racial composition of a small state (like Delaware) and a large
state (like California). In fact, most tasks of inference is about the unobserved

218

population, not the observed data — and proportions are estimates of a quantity in
the population.

One way to transform a table of counts to a table of proportions is the function
prop.table. Be careful what you want to take proportions of – this is set by the
margin argument. In R, the first margin (margin = 1) is rows and the second
(margin = 2) is columns.

ptab_race_state <- prop.table(xtab_race_state, margin = 2)

Check out each of these table objects in your console and familiarize yourself with
the difference.

10.7 Composition Plots

How would you make the same figure with ggplot()? First, we want a count for
each state × race combination. So group by those two factors and count how many
observations are in each two-way categorization. group_by() can take any number
of variables, separated by commas.

grp_race_state <- cen10 |>
count(race, state)

Can you tell from the code what grp_race_state will look like?

run on your own
grp_race_state

Now, we want to tell ggplot2 something like the following: I want bars by state,
where heights indicate racial groups. Each bar should be colored by the race. With
some googling, you will get something like this:

ggplot(data = grp_race_state, aes(x = state, y = n, fill = race)) +
geom_col(position = "fill") + # the position is determined by the fill ae
scale_fill_brewer(name = "Census Race", palette = "OrRd", direction = -1) + # choose palette
coord_flip() + # flip axes
scale_y_continuous(labels = percent) + # label numbers as percentage
labs(
y = "Proportion of Racial Group within State",
x = "",

219

source = "Source: 2010 Census sample"
) +
theme_minimal()

220

Alabama
Alaska

Arizona
Arkansas
California
Colorado

Connecticut
Delaware

District of Columbia
Florida

Georgia
Hawaii
Idaho
Illinois

Indiana
Iowa

Kansas
Kentucky
Louisiana

Maine
Maryland

Massachusetts
Michigan

Minnesota
Mississippi

Missouri
Montana

Nebraska
Nevada

New Hampshire
New Jersey
New Mexico

New York
North Carolina

North Dakota
Ohio

Oklahoma
Oregon

Pennsylvania
Rhode Island

South Carolina
South Dakota

Tennessee
Texas
Utah

Vermont
Virginia

Washington
West Virginia

Wisconsin
Wyoming

0% 25% 50% 75% 100%
Proportion of Racial Group within State

Census Race

American Indian or Alaska Native

Black/Negro

Chinese

Japanese

Other Asian or Pacific Islander

Other race, nec

Three or more major races

Two major races

White

221

10.8 Line graphs

Line graphs are useful for plotting time trends.

The Census does not track individuals over time. So let’s take up another example:
The U.S. Supreme Court. Take the dataset justices_court-median.csv.

This data is adapted from the estimates of Martin and Quinn on their website
http://mqscores.lsa.umich.edu/.7

justice <- read_csv("data/input/justices_court-median.csv")

What does the data look like? How do you think it is organized? What does each
row represent?

justice

A tibble: 746 x 7
term justice_id justice idealpt idealpt_sd median_idealpt median_justice
<dbl> <dbl> <chr> <dbl> <dbl> <dbl> <chr>

1 1937 67 McReynolds 3.44 0.54 -0.568 Brandeis
2 1937 68 Brandeis -0.612 0.271 -0.568 Brandeis
3 1937 71 Sutherland 1.59 0.549 -0.568 Brandeis
4 1937 72 Butler 2.06 0.426 -0.568 Brandeis
5 1937 74 Stone -0.774 0.259 -0.568 Brandeis
6 1937 75 Hughes2 -0.368 0.232 -0.568 Brandeis
7 1937 76 O. Roberts 0.008 0.228 -0.568 Brandeis
8 1937 77 Cardozo -1.59 0.634 -0.568 Brandeis
9 1937 78 Black -2.90 0.334 -0.568 Brandeis
10 1937 79 Reed -1.06 0.342 -0.568 Brandeis
i 736 more rows

As you might have guessed, these data can be shown in a time trend from the range
of the term variable. As there are only nine justices at any given time and justices
have life tenure, there times on the court are staggered. With a common measure
of “preference”, we can plot time trends of these justices ideal points on the same
y-axis scale.

7This exercise inspired from Princeton’s R Camp Assignment.

222

http://mqscores.lsa.umich.edu/

ggplot(justice, aes(x = term, y = idealpt)) +
geom_line()

−5

0

5

1940 1960 1980 2000 2020
term

id
ea

lp
t

Why does the above graph not look like the the put in the beginning? Fix it by
adding just one aesthetic to the graph.

enter a correction that draws separate lines by group.

If you got the right aesthetic, this seems to “work” off the shelf. But take a moment
to see why the code was written as it is and how that maps on to the graphics.
What is the group aesthetic doing for you?

Now, this graphic already indicates a lot, but let’s improve the graphics so people
can actually read it. This is left for a Exercise.

As social scientists, we should also not forget to ask ourselves whether these numeri-
cal measures are fit for what we care about, or actually succeeds in measuring what
we’d like to measure. The estimation of these “ideal points” is a subfield of political
methodology beyond this prefresher. For more reading, skim through the original
paper by Martin and Quinn (2002).8 Also for a methodological discussion on the
difficulty of measuring time series of preferences, check out Bailey (2013).9

8Martin, Andrew D. and Kevin M. Quinn. 2002. “Dynamic Ideal Point Estimation via Markov
Chain Monte Carlo for the U.S. Supreme Court, 1953-1999”. Political Analysis. 10(2): 134-153.

9Bailey, Michael A. 2013. “Is Today’s Court the Most Conservative in Sixty Years? Challenges and

223

http://mqscores.lsa.umich.edu/media/pa02.pdf
http://mqscores.lsa.umich.edu/media/pa02.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf

Exercises

In the time remaining, try the following exercises. Order doesn’t matter.

1: Rural states

Make a well-labelled figure that plots the proportion of the state’s population (as
per the census) that is 65 years or older. Each state should be visualized as a point,
rather than a bar, and there should be 51 points, ordered by their value. All labels
should be readable.

Enter yourself

2: The swing justice

Using the justices_court-median.csv dataset and building off of the plot that
was given, make an improved plot by implementing as many of the following changes
(which hopefully improves the graph):

• Label axes
• Use a black-white background.
• Change the breaks of the x-axis to print numbers for every decade, not just

every two decades.
• Plots each line in translucent gray, so the overlapping lines can be visualized

clearly. (Hint: in ggplot the alpha argument controls the degree of trans-
parency)

• Limit the scale of the y-axis to [-5, 5] so that the outlier justice in the 60s is
trimmed and the rest of the data can be seen more easily (also, who is that
justice?)

• Plot the ideal point of the justice who holds the “median” ideal point in a
given term. To distinguish this with the others, plot this line separately in a
very light red below the individual justice’s lines.

• Highlight the trend-line of only the nine justices who are currently sitting on
SCOTUS. Make sure this is clearer than the other past justices.

• Add the current nine justice’s names to the right of the endpoint of the 2016
figure, alongside their ideal point.

• Make sure the text labels do not overlap with each other for readability using
the ggrepel package.

Opportunities in Measuring Judicial Preferences.”. Journal of Politics 75(3): 821-834

224

https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf
https://michaelbailey.georgetown.domains/wp-content/uploads/2018/05/JOP_proofs_June2013.pdf

• Extend the x-axis label to about 2020 so the text labels of justices are to the
right of the trend-lines.

• Add a caption to your text describing the data briefly, as well as any features
relevant for the reader (such as the median line and the trimming of the y-axis)

Enter yourself

3: Don’t sort by the alphabet

The Figure we made that shows racial composition by state has one notable short-
coming: it orders the states alphabetically, which is not particularly useful if you
want see an overall pattern, without having particular states in mind.

Find a way to modify the figures so that the states are ordered by the proportion of
White residents in the sample.

Enter yourself

4 What to show and how to show it

As a student of politics our goal is not necessarily to make pretty pictures, but rather
make pictures that tell us something about politics, government, or society. If you
could augment either the census dataset or the justices dataset in some way, what
would be an substantively significant thing to show as a graphic?

225

11 Joins and Merges, Wide and Long

Module originally written by Shiro Kuriwaki, Connor Jerzak, and Yon Soo
Park.

Motivation

The “Democratic Peace” is one of the most widely discussed propositions in politi-
cal science, covering the fields of International Relations and Comparative Politics,
with insights to domestic politics of democracies (e.g. American Politics). The one-
sentence idea is that democracies do not fight with each other. There have been
much theoretical debate – for example in earlier work, Oneal and Russet (1999)
argue that the democratic peace is not due to the hegemony of strong democracies
like the U.S. and attempt to distinguish between realist and what they call Kantian
propositions (e.g. democratic governance, international organizations)1.

An empirical demonstration of the democratic peace is also a good example of a
Time Series Cross Sectional (or panel) dataset, where the same units (in this
case countries) are observed repeatedly for multiple time periods. Experience in
assembling and analyzing a TSCS dataset will prepare you for any future research
in this area.

Where are we? Where are we headed?

Up till now, you should have covered:

• R basic programming
• Counting.
• Visualization.
• Objects and Classes.
• Matrix algebra in R
• Functions.

1The Kantian Peace: The Pacific Benefits of Democracy, Interdependence, and International Or-
ganizations, 1885-1992. World Politics 52(1):1-37

226

https://blackboard.angelo.edu/bbcswebdav/institution/LFA/CSS/Course%20Material/SEC6302/Readings/Lesson_3/Oneal-Russett.pdf
https://blackboard.angelo.edu/bbcswebdav/institution/LFA/CSS/Course%20Material/SEC6302/Readings/Lesson_3/Oneal-Russett.pdf
https://blackboard.angelo.edu/bbcswebdav/institution/LFA/CSS/Course%20Material/SEC6302/Readings/Lesson_3/Oneal-Russett.pdf

Today you will work on your own, but feel free to ask a fellow classmate nearby or
the instructor. The objective for this session is to get more experience using R, but
in the process (a) test a prominent theory in the political science literature and (b)
explore related ideas of interest to you.

11.1 Setting up

library(dplyr)
library(tidyr)
library(readr)
library(ggplot2)

11.2 Create a project directory

First start a directory for this project. This can be done manually or through
RStudio’s Project feature(File > New Project...)

Directories is the computer science / programming name for folders. While advice
about how to structure your working directories might strike you as petty, we believe
that starting from some well-tested guides will go a long way in improving the quality
and efficiency of your work.

Chapter 4 of Gentzkow and Shapiro’s memo, Code and Data for the Social Scientist]
provides a good template.

11.3 Data Sources

Most projects you do will start with downloading data from elsewhere. For this task,
you’ll probably want to track down and download the following:

• Correlates of war dataset (COW): Find and download the Militarized
Interstate Disputes (MIDs) data from the Correlates of War website: http:
//www.correlatesofwar.org/data-sets. Or a dyad-version on dataverse: https:
//dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/11489

• PRIO Data on Armed Conflict: Find and download the Uppsala Conflict
Data Program (UCDP) and PRIO dyad-year data on armed conflict(https://
www.prio.org) or this link to to the flat csv file (http://ucdp.uu.se/downloads/
dyadic/ucdp-dyadic-171.csv).

227

https://web.stanford.edu/~gentzkow/research/CodeAndData.pdf
http://www.correlatesofwar.org/data-sets
http://www.correlatesofwar.org/data-sets
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/11489
https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/11489
https://www.prio.org
https://www.prio.org
http://ucdp.uu.se/downloads/dyadic/ucdp-dyadic-171.csv
http://ucdp.uu.se/downloads/dyadic/ucdp-dyadic-171.csv

• Polity: The Polity data can be downloaded from their website (http://www.
systemicpeace.org/inscrdata.html). Look for the newest version of the time
series that has the widest coverage.

11.4 Example with 2 Datasets

Let’s read in a sample dataset.

polity <- read_csv("data/input/sample_polity.csv")
mid <- read_csv("data/input/sample_mid.csv")

What does polity look like?

unique(polity$country)

[1] "France" "Prussia" "Germany" "United States"

ggplot(polity, aes(x = year, y = polity2)) +
facet_wrap(~country) +
geom_line()

Prussia United States

France Germany

1800 1850 1900 1950 2000 1800 1850 1900 1950 2000

−10

−5

0

5

10

−10

−5

0

5

10

year

po
lit

y2

228

http://www.systemicpeace.org/inscrdata.html
http://www.systemicpeace.org/inscrdata.html

head(polity)

A tibble: 6 x 5
scode ccode country year polity2
<chr> <dbl> <chr> <dbl> <dbl>

1 FRN 220 France 1800 -8
2 FRN 220 France 1801 -8
3 FRN 220 France 1802 -8
4 FRN 220 France 1803 -8
5 FRN 220 France 1804 -8
6 FRN 220 France 1805 -8

MID is a dataset that captures a dispute for a given country and year.

mid

A tibble: 6,132 x 5
ccode polity_code dispute StYear EndYear
<dbl> <chr> <dbl> <dbl> <dbl>

1 200 UKG 1 1902 1903
2 2 USA 1 1902 1903
3 345 YGS 1 1913 1913
4 300 <NA> 1 1913 1913
5 339 ALB 1 1946 1946
6 200 UKG 1 1946 1946
7 200 UKG 1 1951 1952
8 651 EGY 1 1951 1952
9 630 IRN 1 1856 1857
10 200 UKG 1 1856 1857
i 6,122 more rows

11.5 Loops

Notice that in the mid data, we have a start of a dispute vs. an end of a dispute.In
order to combine this into the polity data, we want a way to give each of the
interval years a row.

There are many ways to do this, but one is a loop. We go through one row at a
time, and then for each we make a new dataset. that has year as a sequence of each
year. A lengthy loop like this is typically slow, and you’d want to recast the task so
you can do things with functions. But, a loop is a good place to start.

229

mid_year_by_year <- data_frame(
ccode = numeric(),
year = numeric(),
dispute = numeric()

)

Warning: `data_frame()` was deprecated in tibble 1.1.0.
i Please use `tibble()` instead.

for (i in 1:nrow(mid)) {
x <- data_frame(
ccode = mid$ccode[i], ## row i's country
year = mid$StYear[i]:mid$EndYear[i], ## sequence of years for dispute in row i
dispute = 1

)
mid_year_by_year <- rbind(mid_year_by_year, x)

}

head(mid_year_by_year)

A tibble: 6 x 3
ccode year dispute
<dbl> <int> <dbl>

1 200 1902 1
2 200 1903 1
3 2 1902 1
4 2 1903 1
5 345 1913 1
6 300 1913 1

11.6 Merging

We want to combine these two datasets by merging. Base-R has a function called
merge. dplyr has several types of joins (the same thing). Those names are based
on SQL syntax.

230

Here we can do a left_join matching rows from mid to polity. We want to keep
the rows in polity that do not match in mid, and label them as non-disputes.

p_m <- left_join(polity,
distinct(mid_year_by_year),
by = c("ccode", "year")

)

head(p_m)

A tibble: 6 x 6
scode ccode country year polity2 dispute
<chr> <dbl> <chr> <dbl> <dbl> <dbl>

1 FRN 220 France 1800 -8 NA
2 FRN 220 France 1801 -8 NA
3 FRN 220 France 1802 -8 NA
4 FRN 220 France 1803 -8 NA
5 FRN 220 France 1804 -8 NA
6 FRN 220 France 1805 -8 NA

Replace dispute = NA rows with a zero.

231

p_m$dispute[is.na(p_m$dispute)] <- 0

Reshape the dataset long to wide

p_m_wide <- pivot_wider(p_m,
id_cols = c(scode, ccode, country),
names_from = year,
values_from = polity2

)

select(p_m_wide, 1:10)

A tibble: 4 x 10
scode ccode country `1800` `1801` `1802` `1803` `1804` `1805` `1806`
<chr> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 FRN 220 France -8 -8 -8 -8 -8 -8 -8
2 GMY 255 Prussia -10 -10 -10 -10 -10 -10 NA
3 GMY 255 Germany NA NA NA NA NA NA NA
4 USA 2 United States 4 4 4 4 4 4 4

11.7 Main Project

Try building a panel that would be useful in answering the Democratic Peace Ques-
tion, perhaps in these steps.

Task 1: Data Input and Standardization

Often, files we need are saved in the .xls or xlsx format. It is possible to read
these files directly into R, but experience suggests that this process is slower than
converting them first to .csv format and reading them in as .csv files.

readxl/readr/haven packages(https://github.com/tidyverse/tidyverse) is con-
stantly expanding to capture more file types. In day 1, we used the package readxl,
using the read_excel() function.

232

https://github.com/tidyverse/tidyverse

Task 2: Data Merging

We will use data to test a version of the Democratic Peace Thesis (DPS). Democra-
cies are said to go to war less because the leaders who wage wars are accountable
to voters who have to bear the costs of war. Are democracies less likely to engage
in militarized interstate disputes?

To start, let’s download and merge some data.

• Load in the Militarized Interstate Dispute (MID) files. Militarized interstate
disputes are hostile action between two formally recognized states. Examples
of this would be threats to use force, threats to declare war, beginning war,
fortifying a border with troops, and so on.

• Find a way to merge the Polity IV dataset and the MID data. This process
can be a bit tricky.

• An advanced version of this task would be to download the dyadic form of the
data and try merging that with polity.

Task 3: Tabulations and Visualization

1. Calculate the mean Polity2 score by year. Plot the result. Use graphical
indicators of your choosing to show where key events fall in this timeline (such
as 1914, 1929, 1939, 1989, 2008). Speculate on why the behavior from 1800 to
1920 seems to be qualitatively different than behavior afterwards.

2. Do the same but only among state-years that were involved in a MID. Plot
this line together with your results from 1.

3. Do the same but only among state years that were not involved in a MID.
4. Arrive at a tentative conclusion for how well the Democratic Peace argument

seems to hold up in this dataset. Visualize this conclusion.

233

12 Simulation

Module originally written by Connor Jerzak and Shiro Kuriwaki.

Motivation: Simulation as an Analytical Tool

An increasing amount of political science contributions now include a simulation.

• Axelrod (1977) demonstrated via simulation how atomized individuals evolve
to be grouped in similar clusters or countries, a model of culture.1

• Chen and Rodden (2013) argued in a 2013 article that the vote-seat inequality
in U.S. elections that is often attributed to intentional partisan gerryman-
dering can actually attributed to simply the reality of “human geography” –
Democratic voters tend to be concentrated in smaller area. Put another way,
no feasible form of gerrymandering could spread out Democratic voters in such
a way to equalize their vote-seat translation effectiveness. After demonstrat-
ing the empirical pattern of human geography, they advance their key claim
by simulating thousands of redistricting plans and record the vote-seat ratio.2

• Gary King, James Honaker, and multiple other authors propose a way to
analyze missing data with a method of multiple imputation, which uses a lot
of simulation from a researcher’s observed dataset.3 (Software: Amelia4)

Statistical methods also incorporate simulation:

• The bootstrap: a statistical method for estimating uncertainty around some
parameter by re-sampling observations.

• Bagging: a method for improving machine learning predictions by re-sampling
observations, storing the estimate across many re-samples, and averaging these
estimates to form the final estimate. A variance reduction technique.

1Axelrod, Robert. 1997. “The Dissemination of Culture.” Journal of Conflict Resolution 41(2):
203–26.

2Chen, Jowei, and Jonathan Rodden. “Unintentional Gerrymandering: Political Geography and
Electoral Bias in Legislatures. Quarterly Journal of Political Science, 8:239-269”

3King, Gary, et al. “Analyzing Incomplete Political Science Data: An Alternative Algorithm for
Multiple Imputation”. American Political Science Review, 95: 49-69.

4James Honaker, Gary King, Matthew Blackwell (2011). Amelia II: A Program for Missing Data.
Journal of Statistical Software, 45(7), 1-47.

234

http://www-personal.umich.edu/~axe/research/Dissemination.pdf
http://www-personal.umich.edu/~jowei/florida.pdf
https://gking.harvard.edu/files/abs/evil-abs.shtml
http://www-personal.umich.edu/~axe/research/Dissemination.pdf
http://www-personal.umich.edu/~axe/research/Dissemination.pdf
http://www-personal.umich.edu/~jowei/florida.pdf
http://www-personal.umich.edu/~jowei/florida.pdf
https://gking.harvard.edu/files/abs/evil-abs.shtml
https://gking.harvard.edu/files/abs/evil-abs.shtml
http://www.jstatsoft.org/v45/i07/
http://www.jstatsoft.org/v45/i07/

• Statistical reasoning: if you are trying to understand a quantitative problem,
a wonderful first-step to understand the problem better is to simulate it! The
analytical solution is often very hard (or impossible), but the simulation is
often much easier :-)

Where are we? Where are we headed?

Up till now, you should have covered:

• R basics
• Visualization
• Matrices and vectors
• Functions, objects, loops
• Joining real data

In this module, we will start to work with generating data within R, from thin air,
as it were. Doing simulation also strengthens your understanding of Probability
(Section Chapter 5).

Check your Understanding

• What does the sample() function do?
• What does runif() stand for?
• What is a seed?
• What is a Monte Carlo?

Check if you have an idea of how you might code the following tasks:

• Simulate 100 rolls of a die
• Simulate one random ordering of 25 numbers
• Simulate 100 values of white noise (uniform random variables)
• Generate a “bootstrap” sample of an existing dataset

We’re going to learn about this today!

12.1 Pick a sample, any sample

12.2 The sample() function

The core functions for coding up stochastic data revolves around several key func-
tions, so we will simply review them here.

235

Suppose you have a vector of values x and from it you want to randomly sample a
sample of length size. For this, use the sample function

sample(x = 1:10, size = 5)

[1] 10 7 4 1 5

There are two subtypes of sampling – with and without replacement.

1. Sampling without replacement (replace = FALSE) means once an element of
x is chosen, it will not be considered again:

sample(x = 1:10, size = 10, replace = FALSE) ## no number appears more than once

[1] 5 4 6 2 1 10 8 9 3 7

2. Sampling with replacement (replace = TRUE) means that even if an element
of x is chosen, it is put back in the pool and may be chosen again.

sample(x = 1:10, size = 10, replace = TRUE) ## any number can appear more than once

[1] 10 3 3 2 3 7 4 3 2 3

It follows then that you cannot sample without replacement a sample that is larger
than the pool.

sample(x = 1:10, size = 100, replace = FALSE)

Error in sample.int(length(x), size, replace, prob): cannot take a sample larger than the population when 'replace = FALSE'

So far, every element in x has had an equal probability of being chosen. In some
application, we want a sampling scheme where some elements are more likely to be
chosen than others. The argument prob handles this.

For example, this simulates 20 fair coin tosses (each outcome is equally likely to
happen)

sample(c("Head", "Tail"), size = 20, prob = c(0.5, 0.5), replace = TRUE)

236

[1] "Head" "Head" "Tail" "Head" "Head" "Tail" "Tail" "Tail" "Tail" "Head"
[11] "Tail" "Head" "Head" "Tail" "Tail" "Tail" "Head" "Tail" "Head" "Head"

But this simulates 20 biased coin tosses, where say the probability of Tails is 4 times
more likely than the number of Heads

sample(c("Head", "Tail"), size = 20, prob = c(0.2, 0.8), replace = TRUE)

[1] "Head" "Tail" "Tail" "Tail" "Tail" "Tail" "Tail" "Head" "Tail" "Head"
[11] "Tail" "Tail" "Tail" "Head" "Tail" "Tail" "Tail" "Head" "Tail" "Tail"

12.2.1 Sampling rows from a dataframe

In tidyverse, there is a convenience function to sample rows randomly: sample_n()
and sample_frac().

For example, load the dataset on cars, mtcars, which has 32 observations.

mtcars

mpg cyl disp hp drat wt qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

237

Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

sample_n picks a user-specified number of rows from the dataset:

sample_n(mtcars, 3)

mpg cyl disp hp drat wt qsec vs am gear carb
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3

Sometimes you want a X percent sample of your dataset. In this case use
sample_frac()

sample_frac(mtcars, 0.10)

mpg cyl disp hp drat wt qsec vs am gear carb
Dodge Challenger 15.5 8 318 150 2.76 3.520 16.87 0 0 3 2
Maserati Bora 15.0 8 301 335 3.54 3.570 14.60 0 1 5 8
AMC Javelin 15.2 8 304 150 3.15 3.435 17.30 0 0 3 2

As a side-note, these functions have very practical uses for any type of data analy-
sis:

• Inspecting your dataset: using head() all the same time and looking over the
first few rows might lead you to ignore any issues that end up in the bottom
for whatever reason.

238

• Testing your analysis with a small sample: If running analyses on a dataset
takes more than a handful of seconds, change your dataset upstream to a
fraction of the size so the rest of the code runs in less than a second. Once
verifying your analysis code runs, then re-do it with your full dataset (by
simply removing the sample_n / sample_frac line of code in the beginning).
While three seconds may not sound like much, they accumulate and eat up
time.

12.3 Random numbers from specific distributions

rbinom()

rbinom builds upon sample as a tool to help you answer the question – what is the
total number of successes I would get if I sampled a binary (Bernoulli) result from
a test with size number of trials each, with a event-wise probability of prob. The
first argument n asks me how many such numbers I want.

For example, I want to know how many Heads I would get if I flipped a fair coin
100 times.

rbinom(n = 1, size = 100, prob = 0.5)

[1] 58

Now imagine this I wanted to do this experiment 10 times, which would require I
flip the coin 10 x 100 = 1000 times! Helpfully, we can do this in one line

rbinom(n = 10, size = 100, prob = 0.5)

[1] 50 52 51 55 44 44 49 50 45 49

runif()

runif also simulates a stochastic scheme where each event has equal probability of
getting chosen like sample, but is a continuous rather than discrete system. We will
cover this more in the next math module.

The intuition to emphasize here is that one can generate potentially infinite amounts
(size n) of noise that is a essentially random

239

runif(n = 5)

[1] 0.03047805 0.65394686 0.18507853 0.81911229 0.06071945

rnorm()

rnorm is also a continuous distribution, but draws from a Normal distribution –
perhaps the most important distribution in statistics. It runs the same way as
runif

rnorm(n = 5)

[1] 1.3887917 -1.0927291 -1.0772296 -0.1692019 0.6332546

To better visualize the difference between the output of runif and rnorm, let’s
generate lots of each and plot a histogram.

from_runif <- runif(n = 1000)
from_rnorm <- rnorm(n = 1000)

par(mfrow = c(1, 2)) ## base-R parameter for two plots at once
hist(from_runif)
hist(from_rnorm)

240

Histogram of from_runif

from_runif

F
re

qu
en

cy

0.0 0.4 0.8

0
40

80
Histogram of from_rnorm

from_rnorm

F
re

qu
en

cy
−3 −1 1 3

0
50

10
0

20
0

12.4 r, p, and d

Each distribution can do more than generate random numbers (the prefix r). We
can compute the cumulative probability by the function pbinom(), punif(), and
pnorm(). Also the density – the value of the PDF – by dbinom(), dunif() and
dnorm().

12.5 set.seed()

R doesn’t have the ability to generate truly random numbers! Random numbers are
actually very hard to generate. (Think: flipping a coin –> can be perfectly predicted
if I know wind speed, the angle the coin is flipped, etc.). Some people use random
noise in the atmosphere or random behavior in quantum systems to generate “truly”
(?) random numbers. Conversely, R uses deterministic algorithms which take as an
input a “seed” and which then perform a series of operations to generate a sequence
of random-seeming numbers (that is, numbers whose sequence is sufficiently hard
to predict).

Let’s think about this another way. Sampling is a stochastic process, so every time
you run sample() or runif() you are bound to get a different output (because

241

different random seeds are used). This is intentional in some cases but you might
want to avoid it in others. For example, you might want to diagnose a coding
discrepancy by setting the random number generator to give the same number each
time. To do this, use the function set.seed().

In the function goes any number. When you run a sample function in the same
command as a preceding set.seed(), the sampling function will always give you
the same sequence of numbers. In a sense, the sampler is no longer random (in the
sense of unpredictable to use; remember: it never was “truly” random in the first
place)

set.seed(02138)
runif(n = 10)

[1] 0.51236144 0.61530551 0.37451441 0.43541258 0.21166530 0.17812129
[7] 0.04420775 0.45567854 0.88718264 0.06970056

The random number generator should give you the exact same sequence of numbers
if you precede the function by the same seed,

set.seed(02138)
runif(n = 10)

[1] 0.51236144 0.61530551 0.37451441 0.43541258 0.21166530 0.17812129
[7] 0.04420775 0.45567854 0.88718264 0.06970056

Exercises

Census Sampling

What can we learn from surveys of populations, and how wrong do we get if our
sampling is biased?5 Suppose we want to estimate the proportion of U.S. residents
who are non-white (race != "White"). In reality, we do not have any population
dataset to utilize and so we only see the sample survey. Here, however, to understand
how sampling works, let’s conveniently use the Census extract in some cases and
pretend we didn’t in others.

5This example is inspired from Meng, Xiao-Li (2018). Statistical paradises and paradoxes in big
data (I): Law of large populations, big data paradox, and the 2016 US presidential election. Annals
of Applied Statistics 12:2, 685–726. doi:10.1214/18-AOAS1161SF.

242

https://statistics.fas.harvard.edu/files/statistics-2/files/statistical_paradises_and_paradoxes.pdf
https://statistics.fas.harvard.edu/files/statistics-2/files/statistical_paradises_and_paradoxes.pdf
https://statistics.fas.harvard.edu/files/statistics-2/files/statistical_paradises_and_paradoxes.pdf

(a) First, load usc2010_001percent.csv into your R session. After loading the
library(tidyverse), browse it. Although this is only a 0.01 percent extract,
treat this as your population for pedagogical purposes. What is the population
proportion of non-White residents?

(b) Setting a seed to 1669482, sample 100 respondents from this sample. What is
the proportion of non-White residents in this particular sample? By how many
percentage points are you off from (what we labelled as) the true proportion?

(c) Now imagine what you did above was one survey. What would we get if we
did 20 surveys?

To simulate this, write a loop that does the same exercise 20 times, each time
computing a sample proportion. Use the same seed at the top, but be careful
to position the set.seed function such that it generates the same sequence of 20
samples, rather than 20 of the same sample.

Try doing this with a for loop and storing your sample proportions in a new length-
20 vector. (Suggestion: make an empty vector first as a container). After running
the loop, show a histogram of the 20 values. Also what is the average of the 20
sample estimates?

(d) Now, to make things more real, let’s introduce some response bias. The goal
here is not to correct response bias but to induce it and see how it affects
our estimates. Suppose that non-White residents are 10 percent less likely
to respond to enter your survey than White respondents. This is plausible
if you think that the Census is from 2010 but you are polling in 2018, and
racial minorities are more geographically mobile than Whites. Repeat the
same exercise in (c) by modeling this behavior.

You can do this by creating a variable, e.g. propensity, that is 0.9 for non-Whites
and 1 otherwise. Then, you can refer to it in the propensity argument.

(e) Finally, we want to see if more data (“Big Data”) will improve our estimates.
Using the same unequal response rates framework as (d), repeat the same
exercise but instead of each poll collecting 100 responses, we collect 10,000.

(f) Optional - visualize your 2 pairs of 20 estimates, with a bar showing the
“correct” population average.

243

Conditional Proportions

This example is not on simulation, but is meant to reinforce some of the probability
discussion from math lecture.

Read in the Upshot Siena poll from Fall 2016, data/input/upshot-siena-polls.csv.

In addition to some standard demographic questions, we will focus on one called
vt_pres_2 in the csv. This is a two-way presidential vote question, asking respon-
dents who they plan to vote for President if the election were held today – Donald
Trump, the Republican, or Hilary Clinton, the Democrat, with options for Other
candidates as well. For this problem, use the two-way vote question rather than the
4-way vote question.

(a) Drop the the respondents who answered the November poll (i.e. those for
which poll == "November"). We do this in order to ignore this November
population in all subsequent parts of this question because they were not
asked the Presidential vote question.

(b) Using the dataset after the procedure in (a), find the proportion of poll re-
spondents (those who are in the sample) who support Donald Trump.

(c) Among those who supported Donald Trump, what proportion of them has a
Bachelor’s degree or higher (i.e. have a Bachelor’s, Graduate, or other Profes-
sional Degree)?

(d) Among those who did not support Donald Trump (i.e. including supporters of
Hilary Clinton, another candidate, or those who refused to answer the ques-
tion), what proportion of them has a Bachelor’s degree or higher?

(e) Express the numbers in the previous parts as probabilities of specified events.
Define your own symbols: For example, we can let 𝑇 be the event that a
randomly selected respondent in the poll supports Donald Trump, then the
proportion in part (b) is the probability 𝑃(𝑇).

(f) Suppose we randomly sampled a person who participated in the survey and
found that he/she had a Bachelor’s degree or higher. Given this evidence,
what is the probability that the same person supports Donald Trump? Use
Bayes Rule and show your work – that is, do not use data or R to compute
the quantity directly. Then, verify this is the case via R.

244

The Birthday problem

Write code that will answer the well-known birthday problem via simulation.6

The problem is fairly simple: Suppose 𝑘 people gather together in a room. What is
the probability at least two people share the same birthday?

To simplify reality a bit, assume that (1) there are no leap years, and so there are
always 365 days in a year, and (2) a given individual’s birthday is randomly assigned
and independent from each other.

Step 1: Set k to a concrete number. Pick a number from 1 to 365 randomly, k times
to simulate birthdays (would this be with replacement or without?).

Your code

Step 2: Write a line (or two) of code that gives a TRUE or FALSE statement of whether
or not at least two people share the same birth date.

Your code

Step 3: The above steps will generate a TRUE or FALSE answer for your event of
interest, but only for one realization of an event in the sample space. In order
to estimate the probability of your event happening, we need a “stochastic”, as
opposed to “deterministic”, method. To do this, write a loop that does Steps 1 and
2 repeatedly for many times, call that number of times sims. For each of sims
iteration, your code should give you a TRUE or FALSE answer. Code up a way to
store these estimates.

Your code

Step 4: Finally, generalize the function further by letting k be a user-defined number.
You have now created a Monte Carlo simulation!

Your code

Step 5: Generate a table or plot that shows how the probability of sharing a birthday
changes by k (fixing sims at a large number like 1000). Also generate a similar plot
that shows how the probability of sharing a birthday changes by sims (fixing k at
some arbitrary number like 10).

6This exercise draws from Imai (2017)

245

Your code

Extra credit: Give an “analytical” answer to this problem, that is an answer through
deriving the mathematical expressions of the probability.

Your equations

246

13 LaTeX and markdown

Module originally written by Shiro Kuriwaki.

Where are we? Where are we headed?

Up till now, you should have covered:

• Statistical Programming in R

This is only the beginning of R – programming is like learning a language, so learn
more as we use it. And yet R is of likely not the only programming language you
will want to use. While we cannot introduce everything, we’ll pick out a few that
we think are particularly helpful.

Here will cover

• Markdown
• LaTeX (and BibTeX)

as examples of a non-WYSIWYG editor

and the next chapter (you can read it without reading this LaTeX chapter) covers

• command-line
• git

command-line are a basic set of tools that you may have to use from time to time. It
also clarifies what more complicated programs are doing. Markdown is an example
of compiling a plain text file. LaTeX is a typesetting program and git is a version
control program – both are useful for non-quantitative work as well.

247

Check your understanding

Check if you have an idea of how you might code the following tasks:

• What does “WYSIWYG” stand for? How would a non-WYSIWYG format
text?

• How do you start a header in markdown?
• What are some “plain text” editors?
• How do you start a document in .tex?
• How do you start a environment in .tex?
• How do you insert a figure in .tex?
• How do you reference a figure in .tex?
• What is a .bib file?
• Say you came across a interesting journal article. How would you want to

maintain this reference so that you can refer to its citation in all your subse-
quent papers?

13.1 Motivation

Statistical programming is a fast-moving field. The beta version of R was released in
2000, ggplot2 was released on 2005, and RStudio started around 2010. Of course,
some programming technologies are quite “old”: (C in 1969, C++ around 1989, TeX
in 1978, Linux in 1991, Mac OS in 1984). But it is easy to feel you are falling behind
in the recent developments of programming. Today we will do a brief and rough
overview of some fundamental and new tools other than R, with the general aim of
having you break out of your comfort zone so you won’t be shut out from learning
these tools in the future.

13.2 Markdown

Markdown is the text we have been using throughout this course! At its core mark-
down is just plain text. Plain text does not have any formatting embedded in
it. Instead, the formatting is coded up as text. Markdown is not a WYSIWYG
(What you see is what you get) text editor like Microsoft Word or Google Docs.
This will mean that you need to explicitly code for bold{text} rather than hitting
Command+B and making your text look bold on your own computer.

Markdown is known as a “light-weight” editor, which means that it is relatively easy
to write code that will compile. It is quick and easy and satisfies most presentation
purposes; you might want to try LaTeX for more involved papers.

248

13.2.1 Markdown commands

For italic and bold, use either the asterisks or the underlines,

italic **bold**
italic __bold__

And for headers use the hash symbols,

Main Header
Sub-headers

13.2.2 Your own markdown

RStudio makes it easy to compile your very first markdown file by giving you tem-
plates. Got to New > R Markdown, pick a document and click Ok. This will give
you a skeleton of a document you can compile – or “knit”.

Rmd is actually a slight modification of real markdown. It is a type of file that R
reads and turns into a proper md file. Then, it uses a document-conversion called
pandoc to compile your md into documents like PDF or HTML.

Figure 13.1: How Rmds become PDFs or HTMLs

13.2.3 Quarto

R Markdown (.Rmd) files have long been the go-to for reproducible writing work-
flows for R users. In 2022, Posit, PBC, who created R Markdown announced a
new generation of markdown extensions, with Quarto. Quarto (.qmd) files are a
variation on R Markdown which allows for including R, python, Observable, Julia,
and more within a document. Quarto is largely compatible with older .Rmd files,
just by changing the extension. As such, you can integrate LaTeX and markdown
seamlessly.

Some benefits of using Quarto include:

249

https://posit.co/

• ease of customization with template partials
• journal submission templates for many journals
• dozen of output types
• the ability to make websites interacting only with Quarto

13.2.4 A note on plain-text editors

Multiple software exist where you can edit plain-text (roughly speaking, text that
is not WYSIWYG).

• RStudio (especially for R-related links)
• TeXMaker, TeXShop (especially for TeX)
• emacs, aquamacs (general)
• vim (general)
• Sublime Text (general)

Each has their own keyboard shortcuts and special features. You can browse a
couple and see which one(s) you like.

Since June 2021, RStudio has offered a visual editor which tries to bridge the gap
between plain-text and WYSIWYG. While writing, it transforms plain markdown,
RMarkdown, or Quarto documents into a “WYSISWYM” version, What You See
Is What You Mean. Formatting choices, like bold or italicized text are shown as
bold or italicized text, rather than as intermediate markdown. Lists, enumerations,
and images are shown inline, rather than the code that includes them. This is not
a final form though, as styling still occurs when rendering the final document.

13.3 LaTeX

LaTeX is a typesetting program. You’d engage with LaTeX much like you engage
with your R code. You will interact with LaTeX in a text editor, and will writing
code which will be interpreted by the LaTeX compiler and which will finally be
parsed to form your final PDF.

13.3.1 Compile online

1. Go to https://www.overleaf.com
2. Scroll down and go to “CREATE A NEW PAPER” if you don’t have an

account.
3. Let’s discuss the default template.

250

https://quarto.org/docs/journals/templates.html#template-partials
https://quarto.org/docs/extensions/listing-journals.html
https://quarto.org/docs/reference/
https://quarto.org/docs/websites/
https://posit.co/products/open-source/rstudio/
https://www.gnu.org/software/emacs/
http://www.vim.org/download.php
https://www.sublimetext.com
https://www.overleaf.com

4. Make a new document, and set it as your main document. Then type in the
Minimal Working Example (MWE):

\documentclass{article}
\begin{document}
Hello World
\end{document}

13.3.2 Compile your first LaTeX document locally

LaTeX is a very stable system, and few changes to it have been made since the 1990s.
The main benefit: better control over how your papers will look; better methods for
writing equations or making tables; overall pleasing aesthetic.

1. Open a plain text editor. Then type in the MWE

\documentclass{article}
\begin{document}
Hello World
\end{document}

2. Save this as hello_world.tex. Make sure you get the file extension right.
3. Open this in your “LaTeX” editor. This can be TeXMaker, Aqumacs, etc..
4. Go through the click/dropdown interface and click compile.

13.3.3 Main LaTeX commands

LaTeX can cover most of your typesetting needs, to clean equations and intricate
diagrams.

Some main commands you’ll be using are below, and a very concise cheat sheet here:
https://wch.github.io/latexsheet/latexsheet.pdf

Most involved features require that you begin a specific “environment” for that
feature, clearly demarcating them by the notation \begin{figure} and then
\end{figure}, e.g. in the case of figures.

\begin{figure}
\includegraphics{histogram.pdf}
\end{figure}

251

https://wch.github.io/latexsheet/latexsheet.pdf

where histogram.pdf is a path to one of your files.

Notice that each line starts with a backslash \ – in LaTeX this is the symbol to run
a command.

The following syntax at the endpoints are shorthand for math equations.

$$\int x^2 dx$$

these compile math symbols: ∫ 𝑥2𝑑𝑥.1

The align environment is useful to align your multi-line math, for example.

\begin{align}
P(A \mid B) &= \frac{P(A \cap B)}{P(B)}\\
&= \frac{P(B \mid A)P(A)}{P(B)}
\end{align}

𝑃(𝐴 ∣ 𝐵) = 𝑃(𝐴 ∩ 𝐵)
𝑃(𝐵) (13.1)

= 𝑃(𝐵 ∣ 𝐴)𝑃(𝐴)
𝑃(𝐵) (13.2)

Regression tables should be outputted as .tex files with packages like xtable and
stargazer, and then called into LaTeX by \input{regression_table.tex} where
regression_table.tex is the path to your regression output.

Figures and equations should be labelled with the tag (e.g. label{tab:regression}
so that you can refer to them later with their tag Table \ref{tab:regression},
instead of hard-coding Table 2).

For some LaTeX commands you might need to load a separate package that someone
else has written. Do this in your preamble (i.e. before \begin{document}):

\usepackage[options]{package}

where package is the name of the package and options are options specific to the
package.
1Enclosing with $$ instead of $$ also has the same effect, so you may see it too. But this is now
discouraged due to its inflexibility.

252

Further Guides

For a more comprehensive listing of LaTeX commands, Mayya Komisarchik has a
great tutorial set of folders: https://scholar.harvard.edu/mkomisarchik/tutorials-
0

There is a version of LaTeX called Beamer, which is a popular way of making a
slideshow. Slides in markdown is also a competitor. The language of Beamer is the
same as LaTeX but has some special functions for slides.

13.4 BibTeX

BibTeX is a reference system for bibliographical tests. We have a .bib file sepa-
rately on our computer. This is also a plain text file, but it encodes bibliographical
resources with special syntax so that a program can rearrange parts accordingly for
different citation systems.

13.4.1 What is a .bib file?

For example, here is the Nunn and Wantchekon article entry in .bib form.

@article{nunn2011slave,
title={The Slave Trade and the Origins of Mistrust in Africa},
author={Nunn, Nathan and Wantchekon, Leonard},
journal={American Economic Review},
volume={101},
number={7},
pages={3221--3252},
year={2011}

}

The first entry, nunn2011slave, is “pick your favorite” – pick your own name for
your reference system. The other slots in this @article entry are entries that refer
to specific bibliographical text.

13.4.2 What does LaTeX do with .bib files?

Now, in LaTeX, if you type

\textcite{nunn2011slave} argue that current variation in the trust among citizens of African countries has historical roots in the European slave trade in the 1600s.

253

https://scholar.harvard.edu/mkomisarchik/tutorials-0
https://scholar.harvard.edu/mkomisarchik/tutorials-0

as part of your text, then when the .tex file is compiled the PDF shows something
like

in whatever citation style (APSA, APA, Chicago) you pre-specified!

Also at the end of your paper you will have a bibliography with entries ordered and
formatted in the appropriate citation.

This is a much less frustrating way of keeping track of your references – no need to
hand-edit formatting the bibliography to conform to citation rules (which biblatex
already knows) and no need to update your bibliography as you add and drop
references (biblatex will only show entries that are used in the main text).

13.4.3 Stocking up on your .bib files

You should keep your own .bib file that has all your bibliographical resources.
Storing entries is cheap (does not take much memory), so it is fine to keep all your
references in one place (but you’ll want to make a new one for collaborative projects
where multiple people will compile a .tex file).

For example, Gary’s BibTeX file is here: https://github.com/iqss-research/
gkbibtex/blob/master/gk.bib

Citation management software (Mendeley or Zotero) automatically generates .bib
entries from your library of PDFs for you, provided you have the bibliography at-
tributes right.

Exercise

Create a LaTeX document for a hypothetical research paper on your laptop and,
once you’ve verified it compiles into a PDF, come show it to either one of the
instructors.

254

https://github.com/iqss-research/gkbibtex/blob/master/gk.bib
https://github.com/iqss-research/gkbibtex/blob/master/gk.bib

You can also use overleaf if you have preference for a cloud-based system. But don’t
swallow the built-in templates without understanding or testing them.

Each student will have slightly different substantive interests, so we won’t impose
much of a standard. But at a minimum, the LaTeX document should have:

• A title, author, date, and abstract
• Sections
• Italics and boldface
• A figure with a caption and in-text reference to it.

Depending on your subfield or interests, try to implement some of the following:

• A bibliographical reference drawing from a separate .bib file
• A table
• A math expression
• A different font
• Different page margins
• Different line spacing

Concluding the Prefresher

Math may not be the perfect tool for every aspiring political scientist, but hopefully
it was useful background to have at the least:

Historians think this totally meaningless and nonsensical statistic is the product
of an early-modern epistemological shift in which numbers and quantifiable data
became revered above other kinds of knowledge as the most useful and credible
form of truth https://t.co/wVFyAQGxEv

— Gina Anne Tam ��� (@DGTam86) May 29, 2018

But we should be aware that too much slant towards math and programming can
miss the point:

To be clear, PhD training in Econ (first year) is often a disaster– like how to prove
the Central Limit Theorem (the LeBron James of Statistics) with polar-cooardinates.
This is mostly a way to demoralize actual economists and select a bunch of unimag-
inative math jocks.

— Amitabh Chandra (@amitabhchandra2) August 14, 2018

Keep on learning, trying new techniques to improve your work, and learn from
others!

255

What #rstats tricks did it take you way too long to learn? One of mine is using
readRDS and saveRDS instead of repeatedly loading from CSV

— Emily Riederer (@EmilyRiederer) August 19, 2017

Your Feedback Matters

Please tell us how we can improve the Prefresher: The Prefresher is a work in
progress, with material mainly driven by graduate students. Please tell us how we
should change (or not change) each of its elements:

https://harvard.az1.qualtrics.com/jfe/form/SV_esbzN8ZFAOPTqiV

256

14 Text

Module originally written by Connor Jerzak.

Where are we? Where are we headed?

Up till now, you should have covered:

• Loading in data;
• R notation;
• Matrix algebra.

14.1 Review

• " and ' are usually equivalent.
• <- and = are usually interchangeable1. (x <- 3 is equivalent to x = 3, al-

though the former is more preferred because it explicitly states the assign-
ment).

• Use () when you are giving input to a function:

my_results <- FunctionName(FunctionInputs)

note `c(1,2,3)` is inputting three numbers in the function `c`

• Use { } when you are defining a function or writing a for loop:

1Only equal signs are allowed to define the values of a functions’ argument

257

function
MyFunction <- function(InputMatrix) {

TempMat <- InputMatrix
for (i in 1:5) {
TempMat <- t(TempMat) %*% TempMat / 10

}
return(TempMat)

}
myMat <- matrix(rnorm(100 * 5), nrow = 100, ncol = 5)
print(MyFunction(myMat))

[,1] [,2] [,3] [,4] [,5]
[1,] 193.0257 135.8279 171.3503 352.4156 -451.4757
[2,] 135.8279 273.9652 224.9769 361.9001 -429.5467
[3,] 171.3503 224.9769 243.7939 425.1374 -463.1753
[4,] 352.4156 361.9001 425.1374 792.1818 -882.7291
[5,] -451.4757 -429.5467 -463.1753 -882.7291 1135.3174

loop
x <- c()
for (i in 1:20) {

x[i] <- i
}
print(x)

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

14.2 Goals for today

Today, we will learn more about using text data. Our objectives are:

• Reading and writing in text in R.
• To learn how to use paste and sprintf;
• To learn how to use regular expressions;
• To learn about other tools for representing + analyzing text in R.

258

14.3 Reading and writing text in R

• To read in a text file, use readLines

readLines("~/Downloads/Carboxylic acid - Wikipedia.html")

• To write a text file, use:

write.table(my_string_vector, "~/mydata.txt", sep="\t")

14.4 paste() and sprintf()

paste and sprintf are useful commands in text processing, such as for automatically
naming files or automatically performing a series of command over a subset of your
data. Table making also will often need these commands.

Paste concatenates vectors together.

use collapse for inputs of length > 1
my_string <- c("Not", "one", "could", "equal")
paste(my_string, collapse = " ")

[1] "Not one could equal"

use sep for inputs of length == 1
paste("Not", "one", "could", "equal", sep = " ")

[1] "Not one could equal"

For more sophisticated concatenation, use sprintf. This is very useful for automati-
cally making tables.

sprintf("Coefficient for %s: %.3f (%.2f)", "Gender", 1.52324, 0.03143)

[1] "Coefficient for Gender: 1.523 (0.03)"

259

%s is replaced by a character string
%.3f is replaced by a floating point digit with 3 decimal places
%.2f is replaced by a floating point digit with 2 decimal places

14.5 Regular expressions

A regular expression is a special text string for describing a search pattern. They
are most often used in functions for detecting, locating, and replacing desired text
in a corpus.

Use cases:

1. TEXT PARSING. E.g. I have 10000 congressional speaches. Find all those
which mention Iran.

2. WEB SCRAPING. E.g. Parse html code in order to extract research informa-
tion from an online table.

3. CLEANING DATA. E.g. After loading in a dataset, we might need to remove
mistakes from the dataset, orsubset the data using regular expression tools.

Example in R. Extract the tweet mentioning Indonesia.

s1 <- "If only Bradley's arm was longer. RT"
s2 <- "Share our love in Indonesia and in the World. RT if you agree."
my_string <- c(s1, s2)
grepl(my_string, pattern = "Indonesia")

[1] FALSE TRUE

my_string[grepl(my_string, pattern = "Indonesia")]

[1] "Share our love in Indonesia and in the World. RT if you agree."

Key point: Many R commands use regular expressions. See ?grepl. Assume that
x is a character vector and that pattern is the target pattern. In the earlier ex-
ample, x could have been something like my_string and pattern would have been
“Indonesia”. Here are other key uses:

1. DETECT PATTERNS. grepl(pattern, x) goes through all the entries of x
and returns a string of TRUE and FALSE values of the same size as x. It will
return a TRUE whenever that string entry has the target pattern, and FALSE
whenever it doesn’t.

260

2. REPLACE PATTERNS. gsub(pattern, x, replacement) goes through all
the entries of x replaces the pattern with replacement.

gsub(
x = my_string,
pattern = "o",
replacement = "AAAA"

)

[1] "If AAAAnly Bradley's arm was lAAAAnger. RT"
[2] "Share AAAAur lAAAAve in IndAAAAnesia and in the WAAAArld. RT if yAAAAu agree."

3. LOCATE PATTERNS. regexpr(pattern, text) goes through each element
of the character string. It returns a vector of the same length, with the entries
of the vector corresponding to the location of the first pattern match, or a -1
if no match was obtained.

regex_object <- regexpr(pattern = "was", text = my_string)
attr(regex_object, "match.length")

[1] 3 -1

attr(regex_object, "useBytes")

[1] TRUE

regexpr(pattern = "was", text = my_string)[1]

[1] 23

regexpr(pattern = "was", text = my_string)[2]

[1] -1

Seems simple? The problem: the patterns can get pretty complex!

261

14.5.1 Character classes

Some types of symbols are stand in for some more complex thing, rather than taken
literally.

[[:digit:]] Matches with all digits.

[[:lower:]] Matches with lower case letters.

[[:alpha:]] Matches with all alphabetic characters.

[[:punct:]] Matches with all punctuation characters.

[[:cntrl:]] Matches with “control” characters such as \n, \r, etc.

Example in R:

my_string <- "Do you think that 34% of apples are red?"
gsub(my_string, pattern = "[[:digit:]]", replace = "DIGIT")

[1] "Do you think that DIGITDIGIT% of apples are red?"

gsub(my_string, pattern = "[[:alpha:]]", replace = "")

[1] " 34% ?"

14.5.2 Special Characters.

Certain characters (such as ., *, \) have special meaning in the regular expressions
framework (they are used to form conditional patterns as discussed below). Thus,
when we want our pattern to explicitly include those characters as characters, we
must “escape” them by using \ or encoding them in \Q…\E.

Example in R:

my_string <- "Do *really* think he will win?"
gsub(my_string, pattern = "*", replace = "")

[1] "Do really think he will win?"

my_string <- "Now be brave! \n Dread what comrades say of you here in combat! "
gsub(my_string, pattern = "\\\n", replace = "")

[1] "Now be brave! Dread what comrades say of you here in combat! "

262

14.5.3 Conditional patterns

[] The target characters to match are located between the brackets. For example,
[aAbB] will match with the characters a, A, b, B.

[^...] Matches with everything except the material between the brackets. For
example, [^aAbB] will match with everything but the characters a, A, b, B.

(?=) Lookahead – match something that IS followed by the pattern.

(?!) Negative lookahead — match something that is NOT followed by the pat-
tern.

(?<=) Lookbehind – match with something that follows the pattern.

my_string <- "Do you think that 34%of the 23%of apples are red?"
gsub(my_string, pattern = "(?<=%)", replace = " ", perl = TRUE)

[1] "Do you think that 34% of the 23% of apples are red?"

my_string <- c(
"legislative1_term1.png",
"legislative1_term1.pdf",
"legislative1_term2.png",
"legislative1_term2.pdf",
"term2_presidential1.png",
"presidential1.png",
"presidential1_term2.png",
"presidential1_term1.pdf",
"presidential1_term2.pdf"

)

grepl(my_string, pattern = "^(?!presidential1).*\\.png", perl = TRUE)

[1] TRUE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE

• Indicates which file names don’t start with presidential1 but do end in .png
• ^ indicates that the pattern should start at the beginning of the string.
• ?! indicates negative lookahead – we’re looking for any pattern NOT following

presidential1 which meets the subsequent conditions. (see below)
• The first . indicates that, following the negative lookahead, there can be any

characters and the * says that it doesn’t matter how many. Note that we have
to escape the . in .png. (by writing \\. instead of just .)

263

You will have the chance to try out some regular expressions for yourself at the
end!

14.6 Representing Text

In courses and research, we often want to analyze text, to extract meaning out of it.
One of the key decisions we need to make is how to represent the text as numbers.
Once the text is represented numerically, we can then apply a host of statistical
and machine learning methods to it. Those methods are discussed more in the Gov
methods sequence (Gov 2000-2003). Here’s a summary of the decisions you must
make:

1. WHICH TEXT TO USE? Which text do I want to analyze? What is my
universe of documents?

2. HOW TO REPRESENT THE TEXT NUMERICALLY? How do I use num-
bers to represent different things about the text?

3. HOW TO ANALYZE THE NUMERICAL REPRESENTATION? How do I
extract meaning out of the numerical representation?

Representing text numerically.

1. Document term matrix. The document term matrix (DTM) is a common
method for representing text. The DTM is a matrix. Each row of this matrix
corresponds to a document; each column corresponds to a word. It is often
useful to look at summary statistics such as the percentage of speaches in which
a Democratic lawmaker used the word “inequality” compared to a Republican;
the DTM would be very helpful for this and other tasks.

doc1 <- "Rage---Goddess, sing the rage of Peleus’ son Achilles,
murderous, doomed, that cost the Achaeans countless losses,
hurling down to the House of Death so many sturdy souls,
great fighters’ souls."

doc2 <- "And fate? No one alive has ever escaped it,
neither brave man nor coward, I tell you,
it's born with us the day that we are born."

doc3 <- "Many cities of men he saw and learned their minds,
many pains he suffered, heartsick on the open sea,
fighting to save his life and bring his comrades home."

DocVec <- c(doc1, doc2, doc3)

264

Now we can use utility functions in the tm package:

library(tm)
DocCorpus <- Corpus(VectorSource(DocVec))
DTM1 <- inspect(DocumentTermMatrix(DocCorpus))

Consider the effect of different “pre-processing” choices on the resulting DTM!

DocVec <- tolower(DocVec)
DocVec <- gsub(DocVec, pattern = "[[:punct:]]", replace = " ")
DocVec <- gsub(DocVec, pattern = "[[:cntrl:]]", replace = " ")
DocCorpus <- Corpus(VectorSource(DocVec))
DTM2 <- inspect(DocumentTermMatrix(DocCorpus,

control = list(stopwords = TRUE, stemming = TRUE)
))

Stemming is the process of reducing inflected/derived words to their word stem or
base (e.g. stemming, stemmed, stemmer –> stem*)

14.7 Important packages for parsing text

1. rvest – Useful for downloading and manipulating HTML and XM.
2. tm – Useful for converting text into a numerical representation (forming

DTMs).
3. stringr – Useful for string parsing.

Exercises

1

Figure out why this command does what it does:

15.03322123 of spontaneous events are puzzles in the mind. Really, 15.03?

2

Why does this command not work?

265

try(sprintf(
"%s of spontaneous events are %s in the mind. Really, %.2f?",
"15.03322123", "puzzles", "15.03322123"

), TRUE)

3

Using grepl, these materials, Google, and your friends, describe what the following
command does. What changes when value = FALSE?

grep("'",
c("To dare is to lose one's footing momentarily.", "To not dare is to lose oneself."),
value = TRUE

)

[1] "To dare is to lose one's footing momentarily."

4

Write code to automatically extract the file names that DO end start with presiden-
tial and DO end in .pdf

my_string <- c(
"legislative1_term1.png",
"legislative1_term1.pdf",
"legislative1_term2.png",
"legislative1_term2.pdf",
"term2_presidential1.png",
"presidential1.png",
"presidential1_term2.png",
"presidential1_term1.pdf",
"presidential1_term2.pdf"

)

5

Using the same string as in the above, write code to automatically extract the file
names that end in .pdf and that contain the text term2.

266

Your code here

6

Combine these two strings into a single string separated by a “-”. Desired output:
“The carbonyl group in aldehydes and ketones is an oxygen analog of the carbon–
carbon double bond.”

string1 <- "The carbonyl group in aldehydes and ketones
is an oxygen analog of the carbon"

string2 <- "–carbon double bond."

7

Challenge problem! Download this webpage https://en.wikipedia.org/wiki/
Odyssey

• Read the html file into your R workspace.
• Remove all of the htlm tags (you may need Google to help with this one).
• Remove all punctuation.
• Make all the characters lower case.
• Do this same process with this webpage (https://en.wikipedia.org/wiki/Iliad).
• Form a document term matrix from the two resulting text strings.

Your code here

267

https://en.wikipedia.org/wiki/Odyssey
https://en.wikipedia.org/wiki/Odyssey

15 Command-line, git

Module originally written by Shiro Kuriwaki

15.1 Where are we? Where are we headed?

Up till now, you should have covered:

• Statistical Programming in R

In conjunction with the markdown/LaTeX chapter, which is mostly used for type-
setting and presentation, here we’ll introduce the command-line and git, more used
for software extensions and version control

15.2 Check your understanding

Check if you have an idea of how you might code the following tasks:

• What is a GUI?
• What do the following commands stand for in shell: ls (or dir in Windows),

cd, rm, mv (or move in windows), cp (or copy in Windows).
• What is the difference between a relative path and an absolute path?
• What paths do these refer to in shell/terminal: ~/, ., ..
• What is a repository in github?
• What does it mean to “clone” a repository?

15.3 command-line

Elementary programming operations are done on the command-line, or by entering
commands into your computer. This is different from a UI or GUI – graphical user-
interface – which are interfaces that allow you to click buttons and enter commands
in more readable form. Although there are good enough GUIs for most of your
needs, you still might need to go under the hood sometimes and run a command.

268

15.3.1 command-line commands

Open up Terminal in a Mac. (Command Prompt in Windows)

Running this command in a Mac (dir in Windows) should show you a list of all
files in the directory that you are currently in.

ls

pwd stands for present working directory (cd in Windows)

pwd

cdmeans change directory. You need to give it what to change your current directory
to. You can specify a name of another directory in your directory.

Or you can go up to your parent directory. The syntax for that are two periods, ..
. One period . refers to the current directory.

cd ..
pwd

~/ stands for your home directory defined by your computer.

cd ~/
ls

Using .. and . are “relative” to where you are currently at. So are things like
figures/figure1.pdf, which is implicitly writing ./figures/figure1.pdf. These
are called relative paths. In contrast, /Users/shirokuriwaki/project1/figures/figure1.pdf
is an “absolute” path because it does not start from your current directory.

Relative paths are nice if you have a shared Dropbox, for example, and I had
/Users/shirokuriwaki/mathcamp but Connor’s path to the same folder is
/Users/connorjerzak/mathcamp. To run the same code in mathcamp, we should
be using relative paths that start from “mathcamp”. Relative paths are also shorter,
and they are invariant to higher-level changes in your computer.

269

15.3.2 Running things via command-line

Suppose you have a simple Rscript, call it hello_world.R. This is simply a plain
text file that contains

cat("Hello World")

Then in command-line, go to the directory that contains hello_world.R and enter

Rscript hello_world.R

This should give you the output Hello World, which verifies that you “executed”
the file with R via the command-line.

15.3.3 why do command-line?

If you know exactly what you want to do your files and the changes are local,
then command-line might be faster and be more sensible than navigating yourself
through a GUI. For example, what if you wanted a single command that will run
10 R scripts successively at once (as Gentzkow and Shapiro suggest you should do
in your research)? It is tedious to run each of your scripts on Rstudio, especially
if running some take more than a few minutes. Instead you could write a “batch”
script that you can run on the terminal,

Rscript 01_read_data.R
Rscript 02_merge_data.R
Rscript 03_run_regressions.R
Rscript 04_make_graphs.R
Rscript 05_maketable.R

Then run this single file, call it run_all_Rscripts.sh, on your terminal as

sh run_all_Rscripts.sh

On the other hand, command-line prompts may require more keystrokes, and is also
less intuitive than a good GUI. It can also be dangerous for beginners, because it can
allow you to make large irreversible changes inadvertently. For example, removing
a file (rm) has no “Undo” feature.

270

15.4 git

Git is a tool for version control. It comes pre-installed on Macs, you will probably
need to install it yourself on Windows.

15.4.1 Why version control?

All version control software should be built to

• preserve all snapshots of your work
• and catalog them in such a way that you can refer back or even revert back

your files to the past snapshot.
• makes it easy to see exactly which parts of your files you changed between

directories.

Further, git is most commonly used for collaborative work.

• maintains “branches”, or parallel universes of your files that people can switch
back and forth on, doing version control on each one

• makes it easy to “merge” a sub-branch to a master branch when it is ready.

Note that Dropbox is useful for collaborative work too. But the added value of
git’s branches is that people can make different changes simultaneously on their
computers and merge them to the master branch later. In Dropbox, there is only
one copy of each thing so simultaneous editing is not possible.

15.4.2 Open-source code at your fingertips

Some links to check out:

• https://github.com/tidyverse/dplyr
• https://github.com/apple/swift
• https://github.com/kosukeimai/qss

GitHub https://github.com is the GUI to git. Making an account there is free.
Making an account will allow you to be a part of the collaborative programming
community. It will also allow you to “fork” other people’s “repositories”. “Forking”
is making your own copy of the project that forks off from the master project at a
point in time. A “repository” is simply the name of your main project directory.

“cloning” someone else’s repository is similar to forking – it gives you your own
copy.

271

https://github.com/tidyverse/dplyr
https://github.com/apple/swift
https://github.com/kosukeimai/qss
https://github.com

15.4.3 Commands in git

As you might have noticed from all the quoted terms, git uses a lot of its own
terms that are not intuitive and hard to remember at first. The nuts and bolts
of maintaining your version control further requires “adding”, “committing”, and
“push”ing, sometimes “pull”ing.

The tutorial https://try.github.io/ is quite good. You’d want to have familiarity
with command-line to fully understand this and use it in your work.

RStudio Projects has a great git GUI as well.

15.4.4 GitHub Desktop

If you are using GitHub for managing git repositories, one option is to use a desktop
version, GitHub Desktop. It offers an in-between step to ease into the git lingo.
Repositories become a drop-down menu. “push”ing, “pull”ing, and “fetch”ing all
become a big button. It also provides a visual difference interface, which shows the
changes you are making to files before you “push” them. It can’t do everything,
but it provides a way to become familiar with GitHub without the (potentially)
intimidating aspects of diving full-on into the command line.

15.4.5 Is git worth it?

While git is a powerful tool, you may choose to not use it for everything because

• git is mainly for code, not data. It has a fairly strict limit on the size of your
dataset that you cover.

• your collaborators might want to work with Dropbox
• unless you get a paid account, all your repositories will be public.

272

https://try.github.io/
https://desktop.github.com/

Part III

Solutions

273

Solutions to Warmup Questions

Linear Algebra

Vectors

Define the vectors 𝑢 = ⎛⎜
⎝

1
2
3
⎞⎟
⎠
, 𝑣 = ⎛⎜

⎝

4
5
6
⎞⎟
⎠
, and the scalar 𝑐 = 2.

1. 𝑢 + 𝑣 = ⎛⎜
⎝

5
7
9
⎞⎟
⎠

2. 𝑐𝑣 = ⎛⎜
⎝

8
10
12

⎞⎟
⎠

3. 𝑢 ⋅ 𝑣 = 1(4) + 2(5) + 3(6) = 32

If you are having trouble with these problems, please review Section Section 6.1
“Working with Vectors” in Chapter Chapter 6.

Are the following sets of vectors linearly independent?

1. 𝑢 = (1
2), 𝑣 = (2

4)

⇝ No:
2𝑢 = (2

4) , 𝑣 = (2
4)

so infinitely many linear combinations of 𝑢 and 𝑣 that amount to 0 exist.

2. 𝑢 = ⎛⎜
⎝

1
2
5
⎞⎟
⎠
, 𝑣 = ⎛⎜

⎝

3
7
9
⎞⎟
⎠

⇝ Yes: we cannot find linear combination of these two vectors that would amount
to zero.

274

3. 𝑎 = ⎛⎜
⎝

2
−1
1

⎞⎟
⎠
, 𝑏 = ⎛⎜

⎝

3
−4
−2

⎞⎟
⎠
, 𝑐 = ⎛⎜

⎝

5
−10
−8

⎞⎟
⎠

⇝ No: After playing around with some numbers, we can find that

−2𝑎 = ⎛⎜
⎝

−4
2

−2
⎞⎟
⎠

, 3𝑏 = ⎛⎜
⎝

9
−12
−6

⎞⎟
⎠

, −1𝑐 = ⎛⎜
⎝

−5
10
8

⎞⎟
⎠

So

−2𝑎 + 3𝑏 − 𝑐 = ⎛⎜
⎝

0
0
0
⎞⎟
⎠

i.e., a linear combination of these three vectors that would amount to zero exists.

If you are having trouble with these problems, please review Section Section 6.2.

Matrices

A =
⎛⎜⎜⎜⎜
⎝

7 5 1
11 9 3
2 14 21
4 1 5

⎞⎟⎟⎟⎟
⎠

What is the dimensionality of matrix A? 4 × 3

What is the element 𝑎23 of A? 3

Given that

B =
⎛⎜⎜⎜⎜
⎝

1 2 8
3 9 11
4 7 5
5 1 9

⎞⎟⎟⎟⎟
⎠

A + B =
⎛⎜⎜⎜⎜
⎝

8 7 9
14 18 14
6 21 26
9 2 14

⎞⎟⎟⎟⎟
⎠

Given that

275

C = ⎛⎜
⎝

1 2 8
3 9 11
4 7 5

⎞⎟
⎠

A + C = No solution, matrices non-conformable

Given that

𝑐 = 2

𝑐A =
⎛⎜⎜⎜⎜
⎝

14 10 2
22 18 6
4 28 42
8 2 10

⎞⎟⎟⎟⎟
⎠

If you are having trouble with these problems, please review Section Section 6.3.

Operations

Summation

Simplify the following

1.
3

∑
𝑖=1

𝑖 = 1 + 2 + 3 = 6

2.
3

∑
𝑘=1

(3𝑘 + 2) = 3
3

∑
𝑘=1

𝑘 +
3

∑
𝑘=1

2 = 3 × 6 + 3 × 2 = 24

3.
4

∑
𝑖=1

(3𝑘 + 𝑖 + 2) = 3
4

∑
𝑖=1

𝑘 +
4

∑
𝑖=1

𝑖 +
4

∑
𝑖=1

2 = 12𝑘 + 10 + 8 = 12𝑘 + 18

Products

1.
3
∏
𝑖=1

𝑖 = 1 ⋅ 2 ⋅ 3 = 6

2.
3
∏

𝑘=1
(3𝑘 + 2) = (3 + 2) ⋅ (6 + 2) ⋅ (9 + 2) = 440

To review this material, please see Section @ref-sum-notation.

276

Logs and exponents

Simplify the following

1. 42 = 16
2. 4223 = 22⋅223 = 24+3 = 128
3. log10 100 = log10 102 = 2
4. log2 4 = log2 22 = 2
5. when log is the natural log, log 𝑒 = log𝑒 𝑒1 = 1
6. when 𝑎, 𝑏, 𝑐 are each constants, 𝑒𝑎𝑒𝑏𝑒𝑐 = 𝑒𝑎+𝑏+𝑐,
7. log 0 = undefined – no exponentiation of anything will result in a 0.
8. 𝑒0 = 1 – any number raised to the 0 is always 1.
9. 𝑒1 = 𝑒 – any number raised to the 1 is always itself

10. log 𝑒2 = log𝑒 𝑒2 = 2

To review this material, please see Section Section 1.3

Limits

Find the limit of the following.

1. lim
𝑥→2

(𝑥 − 1) = 1
2. lim

𝑥→2
(𝑥−2)(𝑥−1)

(𝑥−2) = 1, though note that the original function (𝑥−2)(𝑥−1)
(𝑥−2) would

have been undefined at 𝑥 = 2 because of a divide by zero problem; otherwise
it would have been equal to 𝑥 − 1.

3. lim
𝑥→2

𝑥2−3𝑥+2
𝑥−2 = 1, same as above.

To review this material please see Section Section 2.3

Calculus

For each of the following functions 𝑓(𝑥), find the derivative 𝑓 ′(𝑥) or 𝑑
𝑑𝑥𝑓(𝑥)

1. 𝑓(𝑥) = 𝑐, 𝑓 ′(𝑥) = 0
2. 𝑓(𝑥) = 𝑥, 𝑓 ′(𝑥) = 1
3. 𝑓(𝑥) = 𝑥2, 𝑓 ′(𝑥) = 2𝑥
4. 𝑓(𝑥) = 𝑥3, 𝑓 ′(𝑥) = 3𝑥2

5. 𝑓(𝑥) = 3𝑥2 + 2𝑥1/3, 𝑓 ′(𝑥) = 6𝑥 + 2
3𝑥−2/3

6. 𝑓(𝑥) = (𝑥3)(2𝑥4), 𝑓 ′(𝑥) = 𝑑
𝑑𝑥2𝑥7 = 14𝑥6

For a review, please see Section Section 3.1 - Section 3.2

277

Optimization

For each of the followng functions 𝑓(𝑥), does a maximum and minimum exist in the
domain 𝑥 ∈ R? If so, for what are those values and for which values of 𝑥?

1. 𝑓(𝑥) = 𝑥 ⇝ neither exists.
2. 𝑓(𝑥) = 𝑥2 ⇝ a minimum 𝑓(𝑥) = 0 exists at 𝑥 = 0, but not a maximum.
3. 𝑓(𝑥) = −(𝑥−2)2 ⇝ a maximum 𝑓(𝑥) = 0 exists at 𝑥 = 2, but not a minimum.

If you are stuck, please try sketching out a picture of each of the functions.

Probability

1. If there are 12 cards, numbered 1 to 12, and 4 cards are chosen, (12
4) =

12⋅11⋅10⋅9
4! = 495 possible hands exist (unordered, without replacement) .

2. Let 𝐴 = {1, 3, 5, 7, 8} and 𝐵 = {2, 4, 7, 8, 12, 13}. Then 𝐴 ∪ 𝐵 =
{1, 2, 3, 4, 5, 7, 8, 12, 13}, 𝐴 ∩ 𝐵 = {7, 8}? If 𝐴 is a subset of the Sample Space
𝑆 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, then the complement 𝐴𝐶 = {2, 4, 6, 9, 10}

3. If we roll two fair dice, what is the probability that their sum would be 11?
⇝ 1

18

4. If we roll two fair dice, what is the probability that their sum would be 12?
⇝ 1

36 . There are two independent dice, so 62 = 36 options in total. While the
previous question had two possibilities for a sum of 11 (5,6 and 6,5), there is
only one possibility out of 36 for a sum of 12 (6,6).

For a review, please see Sections Section 5.2 - Section 5.3

278

Suggested Programming Solutions

library(dplyr)
library(readr)
library(ggplot2)
library(ggrepel)
library(forcats)
library(scales)

Chapter Chapter 10: Visualization

1 State Proportions

cen10 <- readRDS("data/input/usc2010_001percent.Rds")

Group by state, noting that the mean of a set of logicals is a mean of 1s (TRUE) and
0s (FALSE).

grp_st <- cen10 |>
group_by(state) |>
summarize(prop = mean(age >= 65)) |>
arrange(prop) |>
mutate(state = as_factor(state))

Plot points

ggplot(grp_st, aes(x = state, y = prop)) +
geom_point() +
coord_flip() +
scale_y_continuous(labels = percent_format(accuracy = 1)) + # use the scales package to format percentages
labs(
y = "Proportion Senior",

279

x = "",
caption = "Source: 2010 Census sample"

)

AlaskaUtahColoradoTexasIdahoCaliforniaMinnesotaKentuckyVirginiaWashingtonGeorgiaOregonHawaiiOklahomaDelawareNebraskaLouisianaIllinoisNevadaNorth CarolinaMassachusettsTennesseeNew JerseyMissouriNew YorkDistrict of ColumbiaMississippiNorth DakotaWisconsinKansasConnecticutMichiganNew HampshireSouth DakotaMarylandPennsylvaniaArizonaAlabamaOhioIowaIndianaNew MexicoRhode IslandWyomingMontanaArkansasSouth CarolinaFloridaVermontMaineWest Virginia

5% 10% 15% 20%
Proportion Senior

Source: 2010 Census sample

2 Swing Justice

justices <- read_csv("data/input/justices_court-median.csv")

Keep justices who are in the dataset in 2016,

in_2017 <- justices |>
filter(term >= 2016) |>
distinct(justice) |> # unique values
mutate(present_2016 = 1) # keep an indicator to distinguish from rest after merge

df_indicator <- justices |>
left_join(in_2017)

Joining with `by = join_by(justice)`

280

All together

ggplot(df_indicator, aes(x = term, y = idealpt, group = justice_id)) +
geom_line(aes(y = median_idealpt), color = "red", size = 2, alpha = 0.1) +
geom_line(alpha = 0.5) +
geom_line(data = filter(df_indicator, !is.na(present_2016))) +
geom_point(data = filter(df_indicator, !is.na(present_2016), term == 2018)) +
geom_text_repel(
data = filter(df_indicator, term == 2016), aes(label = justice),
nudge_x = 10,
direction = "y"

) + # labels nudged and vertical
scale_x_continuous(breaks = seq(1940, 2020, 10), limits = c(1937, 2020)) + # axis breaks
scale_y_continuous(limits = c(-5, 5)) + # axis limits
labs(
x = "SCOTUS Term",
y = "Estimated Martin-Quinn Ideal Point",
caption = "Outliers capped at -5 to 5. Red lines indicate median justice. Current justices of the 2017 Court in black."

) +
theme_bw()

Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
i Please use `linewidth` instead.

Warning: Removed 19 rows containing missing values or values outside the scale range
(`geom_line()`).

Warning: Removed 9 rows containing missing values or values outside the scale range
(`geom_text_repel()`).

281

−5.0

−2.5

0.0

2.5

5.0

1940 1950 1960 1970 1980 1990 2000 2010 2020
SCOTUS Term

E
st

im
at

ed
 M

ar
tin

−
Q

ui
nn

 Id
ea

l P
oi

nt

Outliers capped at −5 to 5. Red lines indicate median justice. Current justices of the 2017 Court in black.

Chapter Chapter 9: Objects and Loops

cen10 <- read_csv("data/input/usc2010_001percent.csv")
sample_acs <- read_csv("data/input/acs2015_1percent.csv")

Checkpoint #3

cen10 |>
group_by(state) |>
summarise(avg_age = mean(age)) |>
arrange(desc(avg_age)) |>
slice(1:10)

A tibble: 10 x 2
state avg_age
<chr> <dbl>

1 West Virginia 44.1
2 Maine 42.1

282

3 Florida 41.3
4 New Hampshire 41.2
5 North Dakota 41.1
6 Montana 40.6
7 Vermont 40.3
8 Connecticut 40.1
9 Wisconsin 39.9
10 New Mexico 39.3

Exercise 2

states_of_interest <- c("California", "Massachusetts", "New Hampshire", "Washington")

for (state_i in states_of_interest) {
state_subset <- cen10 |> filter(state == state_i)

print(state_i)

print(table(state_subset$race, state_subset$sex))
}

[1] "California"

Female Male
American Indian or Alaska Native 21 21
Black/Negro 127 126
Chinese 76 65
Japanese 15 12
Other Asian or Pacific Islander 182 177
Other race, nec 283 302
Three or more major races 7 7
Two major races 91 83
White 1085 1083

[1] "Massachusetts"

Female Male
American Indian or Alaska Native 4 1
Black/Negro 21 17
Chinese 8 7
Japanese 1 1

283

Other Asian or Pacific Islander 14 14
Other race, nec 9 17
Two major races 10 8
White 272 243

[1] "New Hampshire"

Female Male
American Indian or Alaska Native 1 0
Black/Negro 0 1
Chinese 0 1
Japanese 1 0
Other Asian or Pacific Islander 2 1
Other race, nec 1 0
Two major races 0 1
White 66 63

[1] "Washington"

Female Male
American Indian or Alaska Native 9 5
Black/Negro 11 9
Chinese 2 7
Japanese 4 0
Other Asian or Pacific Islander 28 18
Other race, nec 19 18
Three or more major races 0 2
Two major races 17 16
White 267 257

Exercise 3

race_d <- c()
state_d <- c()
proportion_d <- c()
answer <- data.frame(race_d, state_d, proportion_d)

Then

for (state in states_of_interest) {
for (race in unique(cen10$race)) {
race_state_num <- nrow(cen10[cen10$race == race & cen10$state == state,])

284

state_pop <- nrow(cen10[cen10$state == state,])
race_perc <- round(100 * (race_state_num / (state_pop)), digits = 2)
line <- data.frame(race_d = race, state_d = state, proportion_d = race_perc)
answer <- rbind(answer, line)

}
}

Chapter Chapter 11: Demoratic Peace Project

Task 1: Data Input and Standardization

mid_b <- read_csv("data/input/MIDB_4.2.csv")
polity <- read_excel("data/input/p4v2017.xls")

Task 2: Data Merging

mid_y_by_y <- data_frame(
ccode = numeric(),
year = numeric(),
dispute = numeric()

)
colnames(mid_b)
for (i in 1:nrow(mid_b)) {

x <- data_frame(
ccode = mid_b$ccode[i], ## row i's country
year = mid_b$styear[i]:mid_b$endyear[i], ## sequence of years for dispute in row i
dispute = 1

) ## there was a dispute
mid_y_by_y <- rbind(mid_y_by_y, x)

}

merged_mid_polity <- left_join(polity,
distinct(mid_y_by_y),
by = c("ccode", "year")

)

285

Task 3: Tabulations and Visualization

don't include the -88, -77, -66 values in calculating the mean of polity
mean_polity_by_year <- merged_mid_polity |>

group_by(year) |>
summarise(mean_polity = mean(polity[which(polity < 11 & polity > -11)]))

mean_polity_by_year_ordered <- arrange(mean_polity_by_year, year)

mean_polity_by_year_mid <- merged_mid_polity |>
group_by(year, dispute) |>
summarise(mean_polity_mid = mean(polity[which(polity < 11 & polity > -11)]))

mean_polity_by_year_mid_ordered <- arrange(mean_polity_by_year_mid, year)

mean_polity_no_mid <- mean_polity_by_year_mid_ordered |> filter(dispute == 0)
mean_polity_yes_mid <- mean_polity_by_year_mid_ordered |> filter(dispute == 1)

answer <- ggplot(data = mean_polity_by_year_ordered, aes(x = year, y = mean_polity)) +
geom_line() +
labs(
y = "Mean Polity Score",
x = ""

) +
geom_vline(xintercept = c(1914, 1929, 1939, 1989, 2008), linetype = "dashed")

answer + geom_line(data = mean_polity_no_mid, aes(x = year, y = mean_polity_mid), col = "indianred") + geom_line(data = mean_polity_yes_mid, aes(x = year, y = mean_polity_mid), col = "dodgerblue")

Chapter Chapter 12: Simulation

Census Sampling

pop <- read_csv("data/input/usc2010_001percent.csv")

Rows: 30871 Columns: 4
-- Column specification --
Delimiter: ","
chr (3): state, sex, race

286

dbl (1): age

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

mean(pop$race != "White")

[1] 0.2806517

set.seed(1669482)
samp <- sample_n(pop, 100)
mean(samp$race != "White")

[1] 0.22

ests <- c()
set.seed(1669482)

for (i in 1:20) {
samp <- sample_n(pop, 100)
ests[i] <- mean(samp$race != "White")

}

mean(ests)

pop_with_prop <- mutate(pop, propensity = ifelse(race != "White", 0.9, 1))

ests <- c()
set.seed(1669482)

for (i in 1:20) {
samp <- sample_n(pop_with_prop, 100, weight = propensity)
ests[i] <- mean(samp$race != "White")

}

mean(ests)

287

ests <- c()
set.seed(1669482)

for (i in 1:20) {
samp <- sample_n(pop_with_prop, 10000, weight = propensity)
ests[i] <- mean(samp$race != "White")

}

mean(ests)

288

	About this Booklet
	Authors and Contributors
	Contributing

	Pre-Prefresher Exercises
	Linear Algebra
	Vectors
	Matrices

	Operations
	Summation
	Products
	Logs and exponents

	Limits
	Calculus
	Optimization
	Probability

	Math
	Functions and Operations
	Summation Operators \sum and \prod
	Introduction to Functions
	\log and \exp
	Graphing Functions
	Solving for Variables and Finding Roots
	Sets
	Answers to Examples and Exercises

	Limits
	Example: The Central Limit Theorem
	Example: The Law of Large Numbers
	Sequences
	The Limit of a Sequence
	Limits of a Function
	Continuity
	Answers to Examples

	Calculus
	Example: The Mean is a Type of Integral
	Derivatives
	Properties of derivatives

	Higher-Order Derivatives (Derivatives of Derivatives of Derivatives)
	Composite Functions and the Chain Rule
	Derivatives of natural logs and the exponent
	Derivatives of natural exponential function (e)
	Derivatives of
	Outline of Proof

	Partial Derivatives
	Taylor Series Approximation
	The Indefinite Integration
	Common Rules of Integration

	The Definite Integral: The Area under the Curve
	Common Rules for Definite Integrals

	Integration by Substitution
	Integration by Parts
	Answers to Examples and Exercises

	Optimization
	Example: Meltzer-Richard
	Maxima and Minima
	Concavity of a Function
	Quadratic Forms
	Definiteness of Quadratic Forms

	FOC and SOC
	First Order Conditions
	Second Order Conditions
	Definiteness and Concavity

	Global Maxima and Minima
	Constrained Optimization
	Equality Constraints

	Inequality Constraints
	Kuhn-Tucker Conditions
	Applications of Quadratic Forms

	Probability Theory
	Counting rules
	Sets
	Probability
	Probability Definitions: Formal and Informal
	Probability Operations

	Conditional Probability and Bayes Rule
	Independence
	Random Variables
	Distributions
	Discrete Random Variables
	Continuous Random Variables

	Joint Distributions
	Expectation
	Expected Value of a Function
	Properties of Expected Values

	Variance and Covariance
	Special Distributions
	Summarizing Observed Events (Data)
	Asymptotic Theory
	CLT and LLN
	Big \mathcal{O} Notation

	Answers to Examples and Exercises

	Linear Algebra
	Working with Vectors
	Linear Independence
	Basics of Matrix Algebra
	Systems of Linear Equations
	Systems of Equations as Matrices
	Finding Solutions to Augmented Matrices and Systems of Equations
	Rank — and Whether a System Has One, Infinite, or No Solutions
	The Inverse of a Matrix
	Linear Systems and Inverses
	Determinants
	Getting Inverse of a Matrix using its Determinant
	Answers to Examples and Exercises

	Programming
	Orientation and Reading in Data
	Motivation: Data and You
	Where are we? Where are we headed?
	Check your understanding

	Orienting
	But what is R?
	The Computer and You: Giving Instructions
	Base-R vs. tidyverse
	Dataframe subsetting
	Read data
	Visualization

	A is for Athens
	Locating the Data
	Reading in Data
	Inspecting
	Finding observations
	Extra: A sneak peak at Ober's data

	Exercises

	Manipulating Vectors and Matrices
	Motivation
	Where are we? Where are we headed?
	Read Data
	data.frame vs. matricies
	Handling matricies in R
	Variable Transformations
	Linear Combinations
	Matrix Basics
	Checkpoint
	Exercises

	Objects, Functions, Loops
	Where are we? Where are we headed?
	What is an object?
	lists

	Making your own objects
	Seeing R through objects
	Parsing an object by str()s

	Types of variables
	scalars
	numeric vectors
	characters (aka strings)

	What is a function?
	Write your own function

	Checkpoint
	What is a package?
	Conditionals
	For-loops
	Nested Loops
	Exercises
	Exercise 1: Write your own function
	Exercise 2: Using Loops
	Exercise 3: Storing information derived within loops in a global dataframe

	Visualization
	Motivation: The Law of the Census
	Where are we? Where are we headed?
	Check your understanding
	Read data
	Counting
	Tabulating
	base R graphics and ggplot
	base R
	ggplot

	Improving your graphics
	Cross-tabs
	Composition Plots
	Line graphs
	Exercises

	Joins and Merges, Wide and Long
	Motivation
	Where are we? Where are we headed?
	Setting up
	Create a project directory
	Data Sources
	Example with 2 Datasets
	Loops
	Merging
	Main Project

	Simulation
	Motivation: Simulation as an Analytical Tool
	Where are we? Where are we headed?
	Check your Understanding
	Pick a sample, any sample
	The sample() function
	Sampling rows from a dataframe

	Random numbers from specific distributions
	rbinom()
	runif()
	rnorm()

	r, p, and d
	set.seed()
	Exercises

	LaTeX and markdown
	Where are we? Where are we headed?
	Check your understanding
	Motivation
	Markdown
	Markdown commands
	Your own markdown
	Quarto
	A note on plain-text editors

	LaTeX
	Compile online
	Compile your first LaTeX document locally
	Main LaTeX commands
	Further Guides

	BibTeX
	What is a .bib file?
	What does LaTeX do with .bib files?
	Stocking up on your .bib files

	Exercise
	Concluding the Prefresher
	Your Feedback Matters

	Text
	Where are we? Where are we headed?
	Review
	Goals for today
	Reading and writing text in R
	paste() and sprintf()
	Regular expressions
	Character classes
	Special Characters.
	Conditional patterns

	Representing Text
	Important packages for parsing text
	Exercises

	Command-line, git
	Where are we? Where are we headed?
	Check your understanding
	command-line
	command-line commands
	Running things via command-line
	why do command-line?

	git
	Why version control?
	Open-source code at your fingertips
	Commands in git
	GitHub Desktop
	Is git worth it?

	Solutions
	Solutions to Warmup Questions
	Linear Algebra
	Vectors
	Matrices

	Operations
	Summation
	Products
	Logs and exponents

	Limits
	Calculus
	Optimization
	Probability

	Suggested Programming Solutions
	Chapter Chapter 10: Visualization
	1 State Proportions
	2 Swing Justice

	Chapter Chapter 9: Objects and Loops
	Checkpoint #3
	Exercise 2
	Exercise 3

	Chapter Chapter 11: Demoratic Peace Project
	Task 1: Data Input and Standardization
	Task 2: Data Merging
	Task 3: Tabulations and Visualization

	Chapter Chapter 12: Simulation
	Census Sampling

